下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、22.2解一元二次方程(公式法) 一、教学内容 1一元二次方程求根公式的推导过程; 2公式法的概念; 3利用公式法解一元二次方程 二、教学目标 1、理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程 2、复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a0)的求根公式的推导公式,并应用公式法解一元二次方程 三、重难点关键 1重点:求根公式的推导和公式法的应用 2难点与关键:一元二次方程求根公式法的推导 四、教学过程(一)、复习引入用配方法解方程: 6x2-7x+1=0移项,得: 6x2-7x=-1二次项系数化为1,得: x2-x=-配方,
2、得: x2-x+()2=-+()2 (x-)2=x-= x1=+=1 x2=-+= 总结用配方法解一元二次方程的步骤: (1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解 (二)、探索新知我们都知道,一元二次方程是一般形式ax2+bx+c=0(a0),那么我们能否用上面配方法的步骤求出它们的两根?根据上面的解题步骤推导:解:移项,得: ax2+bx=-c 二次项系数化为1,得 x2+x=- 配方,得: x2+x+()2=-+()
3、2即 (x+)2=a0 4a20 当b2-4ac0时 直接开平方,得:x+= 即x=x1=,x2=当b2-4ac0 x= x1=,x2= (2)将方程化为一般形式 3x2-5x-2=0 a=3,b=-5,c=-2 b2-4ac=(-5)2-43(-2)=490 x= x1=2,x2=- (3)将方程化为一般形式 3x2-11x+9=0 a=3,b=-11,c=9 b2-4ac=(-11)2-439=130 x= x1=,x2= (3)a=4,b=-3,c=1 b2-4ac=(-3)2-441=-70时 x1=x2=当b2-4ac=0时 x1= x2=-b2-4ac0当b2-4ac0时 x+=x1=,x2=当b2-4ac时,方程无实解。用公式法解方程:6x2-7x+1=0解:6x2-7x=-1x2-x=-x2-x+()2=-+()2(x-)2=x-= x1=+=1 x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度公益慈善晚会活动策划与实施合同4篇
- 2025年度互联网内容提供商ICP证年审全权委托服务合同3篇
- 二零二五年度生物科技研发农民工就业服务合同4篇
- 电子商务平台消费者权益保护2025年度国际协调合同2篇
- 2025年度牛肝菌有机认证与市场拓展合同
- 二零二五版昆明滇池度假区酒店管理合同3篇
- 二零二五年度农业种植劳务作业承包合同范本3篇
- 2025年度塑料管材国际贸易争端解决合同
- 2025年度私立学校校长任期教育科研成果转化合同
- 二零二五年度企业员工期权激励合同范本
- 广东省佛山市2025届高三高中教学质量检测 (一)化学试题(含答案)
- 人教版【初中数学】知识点总结-全面+九年级上册数学全册教案
- 四川省成都市青羊区成都市石室联合中学2023-2024学年七上期末数学试题(解析版)
- 咨询公司绩效工资分配实施方案
- 2024-2025学年人教版七年级英语上册各单元重点句子
- 2025新人教版英语七年级下单词表
- 公司结算资金管理制度
- 2024年小学语文教师基本功测试卷(有答案)
- 未成年入职免责协议书
- 项目可行性研究报告评估咨询管理服务方案1
- 5岁幼儿数学练习题
评论
0/150
提交评论