版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、鸽巢问题 例3 鸽巢问题鸽巢问题 摸出摸出5个球,肯定有个球,肯定有2 个同色的,因为个同色的,因为 盒子里有同样大小的红球和蓝球各盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定个,要想摸出的球一定 有有2个同色的,至少要摸出几个球?个同色的,至少要摸出几个球? 只摸只摸2个球能保证个球能保证 是同色的吗?是同色的吗? 有两种颜色。那摸有两种颜色。那摸3 个球就能保证个球就能保证 第一种情况:第一种情况: 第二种情况:第二种情况: 第三种情况:第三种情况: 验证:球的颜色共有验证:球的颜色共有2种,如果只种,如果只 摸出摸出2个球,会出现三种情况:个球,会出现三种情况:1 个红球和个红球
2、和1个蓝球、个蓝球、2个红球、个红球、2个个 蓝球。因此,如果摸出的蓝球。因此,如果摸出的2个球正个球正 好是一红一蓝时就不能满足条件。好是一红一蓝时就不能满足条件。 猜测猜测1:只摸:只摸2个球就能保证是同色的。个球就能保证是同色的。 第一种情况:第一种情况: 第二种情况:第二种情况: 第三种情况:第三种情况: 第四种情况:第四种情况: 验证:把红、蓝两种颜色看成验证:把红、蓝两种颜色看成2 个个“鸽巢鸽巢”,因为,因为5221, 所以摸出所以摸出5个球时,至少有个球时,至少有3个球个球 是同色的,显然,摸出是同色的,显然,摸出5个球不个球不 是最少的。是最少的。 猜测猜测2:摸出:摸出5个
3、球,肯定有个球,肯定有2个是同色的。个是同色的。 第一种情况:第一种情况:第二种情况:第二种情况: 猜测猜测3:有两种颜色。那摸:有两种颜色。那摸3个个 球就能保证有球就能保证有2个同色的球。个同色的球。 盒子里有同样大小的红球和蓝球各盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定个,要想摸出的球一定 有有2个同色的,至少要摸出几个球?个同色的,至少要摸出几个球? 摸出摸出5个球,肯定有个球,肯定有2 个同色的,因为个同色的,因为 只摸只摸2个球能保证个球能保证 是同色的吗?是同色的吗? 有两种颜色。那摸有两种颜色。那摸3 个球就能保证个球就能保证 只要摸出的球数比它们的颜色种数只要摸出
4、的球数比它们的颜色种数 多多1,就能,就能保证保证有两个球同色。有两个球同色。 (一)做一做(一)做一做 1. 向东小学六年级共有向东小学六年级共有367名学生,其中六(名学生,其中六(2)班有)班有49名学生。名学生。 他们说得对吗?为什么?他们说得对吗?为什么? 36736512112 491241415 六年级里至少有两人六年级里至少有两人 的生日是同一天。的生日是同一天。 六六(2)班中至少班中至少 有有5人是同一个月人是同一个月 出生的。出生的。 (一)做一做(一)做一做 2. 把红、黄、蓝、白四种颜色的球各把红、黄、蓝、白四种颜色的球各10个放到一个袋子个放到一个袋子 里。至少取多
5、少个球,可以保证取到两个颜色相同的球?里。至少取多少个球,可以保证取到两个颜色相同的球? 我们从我们从最不利的原则最不利的原则 去考虑:去考虑: 假设我们每种颜色的都拿一个,需要拿假设我们每种颜色的都拿一个,需要拿4个,但是没有同色的,要想有同个,但是没有同色的,要想有同 色的需要再拿色的需要再拿1个球,不论是哪一种颜色的,都一定有个球,不论是哪一种颜色的,都一定有2个同色的。个同色的。 415 (二)解决问题(二)解决问题 1. 希望小学篮球兴趣小组的同学中,最大的希望小学篮球兴趣小组的同学中,最大的12岁,最小的岁,最小的6岁,岁, 最少从中挑选几名学生,就一定能找到两个学生年龄相同。最少
6、从中挑选几名学生,就一定能找到两个学生年龄相同。 718 从从6岁到岁到12岁有几个岁有几个 年龄段?年龄段? (二)解决问题(二)解决问题 2. 从一副扑克牌(从一副扑克牌(52张,没有大小王)中要抽出几张牌来,张,没有大小王)中要抽出几张牌来, 才能保证有一张是红桃?才能保证有一张是红桃?54张呢?张呢? 133140 最后为什么要加最后为什么要加1? 2133142 13131313 德国德国 数学家数学家 狄里克雷狄里克雷 (1805.2.13.1859.5.5.) 抽屉原理是组合数学中的一个重要原理,抽屉原理是组合数学中的一个重要原理, 它最早由德国数学家狄里克雷(它最早由德国数学家狄里克雷(Dirichlet)提)提 出并运用于解决数论中的问题,所以该原理又出并运用于解决数论中的问题,所以该原理又 称称“狄里克雷原理狄里克雷原理”。抽屉原理有两个经典案。抽屉原理有两个经典案 例,一个是把例,一个是把10个苹果放进个苹果放进9个抽屉里,总有个抽屉里,总有 一个抽屉里至少放了一个抽屉里至少放了2个苹果,所以这个原理个苹果,所以这个原理 又称又称“抽屉原理抽屉原理”;另一个是;另一个是6只鸽子飞进只鸽子飞进5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度工程设计合同标的工程质量
- 消费型股东合作的协议书 2篇
- 2024年二手车交易中的物流配送协议3篇
- 2024年度室内浮雕施工合同3篇
- 二零二四年度二手集装箱买卖合同的验收标准3篇
- 2024年度居间服务合同-工程安全监督3篇
- 2024年度东莞市环保工程承包合同
- 重阳节社区老人安全知识培训
- 2024年度建筑项目安全生产责任保险合同
- 六下20古诗两首课件
- 建筑面积计算案例
- 一《撰写报告》(课件)-【中职专用】高二语文同步课件(高教版2023·职业模块)
- 概算审核服务投标方案(技术方案)
- 实施药品全生命周期管理
- 生活垃圾智能称重系统
- 超市库存管理制度
- 小学语文跨学科学习任务群的设计
- 土地整治设计占补平衡施工组织设计方案
- (word完整版)停工检查表
- 2023-2024学年江苏省南京市玄武区重点中学七年级上学期月考数学试卷(含解析)
- 期中考试班级的质量分析
评论
0/150
提交评论