




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、。一级倒立摆的系统分析一、倒立摆系统的模型建立如图 1-1 所示为一级倒立摆的物理模型l?摆杆F小车导 轨x图 1-1一级倒立摆物理模型对于上图的物理模型我们做以下假设:M:小车质量m:摆杆质量b:小车摩擦系数l :摆杆转动轴心到杆质心的长度I :摆杆惯量F:加在小车上的力x:小车位置? :摆杆与垂直向上方向的夹角:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图 1-2 是系统中小车和摆杆的受力分析图。其中, N和 P为小车与摆精选资料,欢迎下载。杆相互作用力的水平和垂直方向的分量。注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢
2、量正方向。PNIPFMBxXNmgX图 1-2小车及摆杆受力分析分析小车水平方向受力,可以得到以下方程:Mx - x- (1-1)由摆杆水平方向的受力进行分析可以得到以下方程:N = md22 (x + l sin )(1-2)dt即:2N= mx+ mlcos - ml sin (1-3)将这个等式代入式( 1-1 )中,可以得到系统的第一个运动方程:2(M+ m) x + bx + mlcos - ml sin = F(1-4)为推出系统的第二个运动方程, 我们对摆杆垂直方向上的合力进行分析,可以得出以下方程:P -P-mg= m d22 ( l cos )(1-5)dt2(1-6)mg=
3、 - mlsin - ml cos 利用力矩平衡方程可以有:精选资料,欢迎下载。(1-7)- Pl sin - Nl cos= I注意:此方程中的力矩方向,由于 = + ? ,cos ? = - cos ,sin ? =- sin ,所以等式前面含有负号。合并两个方程,约去P 和 N可以得到第二个运动方程:( I + ml2) + mgl sin = - mlx cos (1-8)设= + ? ,假设 ? 与 1(单位是弧度)相比很小,即? 1,则可以进行近似处理: cos = - 1,sin = -? ,( d)2= 0。用 udt来代表被控对象的输入力 F,线性化后的两个运动方程如下: (
4、 I + ml2)? - mgl? = mlx(1-9)( M+ m) x + bx - ml? = u假设初始条件为0,则对式( 1-9 )进行拉普拉斯变换,可以得到:(I + ml2)( s)s2- mgl(s) = mlX( s)s2(1-10)2( )() 2() ( )ss -M+ m X s+ bX smls s = U(s)由于输出为角度? ,求解方程组的第一个方程,可以得到:( )2)g()( I + mlX s= ml-s 2 s(1-11)或改写为:( s)=mls 2(1-12)X(s)( I + ml2) s2- mgl如果令v=x, 则有:( s)ml(1-13)V(
5、s) =( I + ml2) s2- mgl如果将上式代入方程组的第二个方程,可以得到:()( I + ml2)g()2( I + ml2)g( )()2ml-sss+ b ml+ s2 ss= U( s)M+ m s s - ml(1-14)整理后可得传递函数:精选资料,欢迎下载。()mls 2 s=b( I + ml2)q(1-15)U(s)()bmgls4 +sqs 3-M+ mmgls2-qq其中 q =()2) -(ml)2M+ m ( I + ml假设系统状态空间方程为:X = AX+ Buy = CX+ Du(1-16)方程组对x, ? 解代数方程,可以得到解如下:x = x2m
6、2gl 22-( I + ml ) b( I + ml )x =()2 x +I()2 ? +I()2 uIM+ m + MmlM+ m + MmlM+ m + Mml(1-17)? = ? =- mlb2 x +mgl( M+ m)2 ? +ml2 uI (M+ m) + MmlI ( M+ m) + MmlI (M+ m)+ Mml整理后可以得到系统状态空间方程:x01200x0222x0-( I + ml ) bm gl0 x( I + ml )()2I()2I()2? =IM+ m + MmlM+ m + Mml1?+M+ m + Mml u0000 ? 0- mlbmgl (M+ m
7、)0?Iml()2I()2()2IM+ m + MmlM+ m + MmlM+ m + Mml xx1000x0y =?=0010 ? + 0 u(1-18)?由( 1-9 )的第一个方程为:( I + ml2)? - mgl ? = mlx对于质量均匀分布的摆杆可以有:12I =ml于是可以得到: ( 13 ml2 + ml2 ) ? -mgl ? = mlx精选资料,欢迎下载。化简可以得到:? = 4l3g ? + 4l3 x(1-19)设 X=x, x, ? , ? ,u= x则有:x0100x0x?0000x1? =00 0 1? +0u ? 003g0?34l 4l xx1000x0
8、y = ? =0010 ? + 0 u(1-20)?以上公式推理是根据牛顿力学的微分方程验证的。在实际系统中模型参数如下:M 小车质量 1.096 Kgm 摆杆质量 0.109 Kgb 小车摩擦系数 0 .1N/m/secl摆杆转动轴心到杆质心的长度0.2 5mI 摆杆惯量 0.0034 kg*m*m将上述参数代入,就可以得到系统的实际模型。摆杆角度和小车位移的传递函数:( s)=0.02725s2()0.0102125s2(1-21)X s- 0.26705摆杆角度和小车加速度之间的传递函数为:(s)=0.02725(1-22)V(s)0.0102125s 2- 0.26705摆杆角度和小车
9、所受外界作用力的传递函数:(s)=2.35655s(1-23)s32U(s)+ 0.0883167s - 27.9169s - 2.30942精选资料,欢迎下载。以外界作用力作为输入的系统状态方程:x0100x0x?0- 0.0883167 0.6293170x0.883167? = 0001?+0 u ? 0- 0.23565527.82850?2.35655xx1000x0y = ? = 0010? + 0 u(1-24)?以小车加速度作为输入的系统状态方程:x0100x0x?0000x1? = 0001?+0 u? 0029.40?3xx1000x0y = ? = 001 0? + 0
10、u(1-25 )?综述可知以上就是一级倒立摆系统的模型建立过程,最终得出了实际模型的传递函数和状态空间方程。二、系统模型的转换以小车加速度作为输入的系统状态方程为例,将系统状态方程转化为能控标准型,能观标准型和约当标准型。由系统状态方程可知:0100A = 000000010029.400B = 103精选资料,欢迎下载。C= 10000010D= 001、转化为能控标准型定出系统特征多项式: a=poly(A)a =1.0000-0.0000 -29.400000由此可知 a0=0, a1=0, a2=-29.4, a3=0。 b3=C*Bb3 =00b2=C*A*B+a3*C*B b2 =
11、13 b1=C*A2*B+a3*C*A*B+a2*C*Bb1 =00 b0=C*A3*B+a3*C*A2*B+a2*C*A*B+a1*C*B b0 =-29.4000精选资料,欢迎下载。0所以系统的能控标准型为:x10100x10x10010x10?1 =0001 ?1 +0 u? 10029.40?11x1y =- 29.4010x10003 0?1+0 u? 12、转化为能观标准型利用对偶性求出能观标准型为:x10000x10- 29.4x11000x100? 1= 01029.4?1 +33 u? 10010? 100x1y = 00 01x1? 1 ? 13、转化为约当标准型首先求出系
12、统的特征值以及相应的特征向量:A=0 1 0 0;0 0 0 0;0 0 0 1;0 0 29.4 0A =01.00000000000001.00000029.40000精选资料,欢迎下载。 V,D=eig(A) V =00 1.0000 -1.0000000 0.00000.1814 -0.1814000.98340.983400D =5.42220000 -5.42220000000000其中 D表示 A 全部特征值构成的对角阵,V 表示相对应的特征向量。求出变换矩阵 V 的逆: V1=inv(V)Warning: Matrix is close to singular or badly
13、 scaled.Results may be inaccurate. RCOND = 1.720635e-292.V1 =1.0e+291 *000.00000.000000 -0.00000.00000.00002.49480002.494800精选资料,欢迎下载。计算变换后的系数矩阵: A1=V1*A*VA1 =5.42220000.0000-5.4222000000.00000000B1=V1*BB1 =1.0e+291 *0.00000.00002.49482.4948所以系统的约当标准型为:x15.4222000x10x10- 5.422200x10?1=0000? 1+ 1.0e
14、+ 291 ? 2.4948 u? 10000?12.4948三、开环阶跃响应曲线及分析利用已知的状态空间方程来进行阶跃响应分析,在 MATLAB中可以写入以下命令:精选资料,欢迎下载。A=0100;0000;0001;0029.40; B=0;1;0;3;C=1000;0100; D=0;0 ; step(A,B,C,D)可以看出,在单位阶跃响应作用下, 小车位置和摆杆角度都是发散的。四、判断系统稳定性判断系统的稳定性可以利用根轨迹来判断,已知实际系统的开环传递函数为:(s)=0.02725,则其根轨迹图形可以利用 MATLABV(s)0.0102125s 2- 0.26705键入如下命令来
15、完成。精选资料,欢迎下载。 num=0.02725; den=0.0102125 0 -0.26705; z=roots(num)z =Empty matrix: 0-by-1 p=roots(den)p =5.1136-5.1136 rlocus(num,den)精选资料,欢迎下载。可以看出系统没有零点,有两个极点,并且有一个极点为正。由画出的根轨迹图形可以看出闭环传递函数的一个极点位于复平面的右半平面,这就意味着系统是一个不稳定的系统。五、能控性和能观性分析对于系统的能控性和能观性分析, 可以利用能控性秩判据和能观性秩判据。能控性秩判据: 对于 n 维连续时间线性时不变系统,构成能控性判别
16、矩阵:Qc = B ?AB? ?An- 1 B,则系统完全能控的充要条件为:rankQc = rank B ?AB? ?An- 1 B = n能观性秩判据: 对于 n 维连续时间线性时不变系统,构成能观性判别C矩阵:Qo = CA? ,则系统完全能观的充要条件为:n- 1CACCArankQo = rank ? = nn- 1CA利用 MATLAB键入以下命令来进行判断: A=0 1 0 0;0 0 0 0;0 0 0 1;0 0 29.4 0; B=0;1;0;3; C=1 0 0 0;0 1 0 0; D=0;0; Qc=B A*B A2*B A3*BQc =01.000000精选资料,欢
17、迎下载。1.000000003.0000088.20003.0000088.20000 R1=rank(Qc)R1 =4 Qo=C;C*A;C*A2;C*A3Qo =10000100010000000000000000000000 R2=rank(Qo)R2 =2可以看出,系统的完全能控矩阵的秩等于系统的状态变量维数,系统的输出完全能观测矩阵的秩等于系统输出向量y 的维数,所以系统是可以完全能控完全能观测的系统。精选资料,欢迎下载。六、根轨迹校正以及仿真已知系统的传递函数:G( s) =0.027250.0102125s2 - 0.26705设计控制器使得调整时间t s =0.5s(2%);最大超调Mp 10%。计算整理可得超前校正装置的零点和极点分别为:zc = - 6.92214 ;zp= -26.4568 ,由此可得校正后的传递函数:( ) ()K(s + 6.92214)0.02725Q= G s K s =s + 26.45680.0102125s2 - 0.26705利用 MATLAB命
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030增稠剂稳定剂行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030国内电器行业市场发展分析及竞争格局与投资前景研究报告
- 2025-2030国内婴儿湿巾行业市场发展分析及竞争格局与投资前景研究报告
- 2025-2030商务外包行业市场发展分析及前景趋势与投资研究报告
- 2025-2030合金铝板市场前景分析及投资策略与风险管理研究报告
- 2025-2030医疗美容医院产业发展分析及发展趋势与投资前景预测报告
- 2025-2030化工焦油行业市场发展分析及发展前景与投资机会研究报告
- 2025-2030功能性饲料行业市场深度分析及竞争格局与投资价值研究报告
- 2025-2030冷敷包行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030农田灌溉设备行业市场深度调研及发展趋势与投资战略研究报告
- 游戏行业虚拟充值卡采购合同
- DB11-T 1953-2022 成品粮储藏技术规范
- 四旋翼无人机飞行姿态的几种改进控制算法研究的任务书
- 《机械制图(多学时)》中职全套教学课件
- 骆驼祥子考点单选题100道及答案解析
- 人教部编版七年级语文上册《散步》示范课教学课件
- 李白《南陵别儿童入京》课件
- 数学新课程标准解读(2)聚焦核心素养关注终身发展课件
- 2024至2030年中国声乐器乐培训行业发展运行现状及投资潜力预测报告
- 症状护理-疼痛课件
- 高标准农田建设项目竣工验收第三方服务采购项目
评论
0/150
提交评论