




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、摘 要随着计算机技术的飞速发展,控制系统计算机辅助设计技术在工具、理论和算法上取得了巨大的进步,以前难于设计的控制系统现在可用新方法和新策略较容易地得到结果。在目前诸多控制系统设计方法中,处于主导地位的是频域设计方法和时域设计方法。频域设计方法根据系统的传递函数进行设计,是最经典也是应用最广泛的设计方法。它是在给定的性能指标下,对于给定的对象模型,确定一个能够完成给定任务的控制器(也称为校正器或者补偿控制器)。在频域设计方法中,常用的有校正、多变量系统设计、定量反馈控制设计等方法。其中,多变量系统的各种设计方法是控制系统的频域设计方法的核心。用频域法研究单输入单输出线性定常系统,用传递函数描述
2、控制系统,用频域设计方法设计和分析控制系统的理论和方法,通常被称为经典控制理论。时域设计方法是基于系统的状态空间模型来进行的,相对频域设计方法,这种方法产生较晚,但发展迅速。目前时域设计方法在工程实际中已不可或缺。在时域设计领域,极点配置设计方法,解藕控制设计方法,线性二次型设计方法是最常用、最有效的设计方法。这种以线性代数为数学工具,用状态空间法描述系统内部的动态性能,用时域设计方法设计和分析控制系统的理论和方法也称为现代控制理论。目 录第一节 pid控制器概述31.1 连续pid控制器31.2 离散pid控制器51.3 pid控制器的变形5第二节过程系统的一阶延迟模型近似72.1 由响应曲
3、线识别一阶模型72.2 基于频域响应的近似方法92.3 基于传递函数的辨识方法102.4 最优降阶方法102.5 传递函数近似一阶模型的拟合11第三节 ziegler-nichols参数整定方法123.1 ziegler-nichols经验公式123.1.1 控制器133.1.2 控制器143.1.3 控制器16第四节 最优pid整定算法19第五节 pid控制器的实现235.1 在matlab下的仿真235.2 pid控制器的电路实现24第六节 心得体会27参 考 文 献28第一节 pid控制器概述1.1 连续pid控制器pid控制一般使用图1.1中给出的控制系统结构。在实际控制中,pid控制
4、器计算出来的控制信号还应该经过一个驱动器后去控制受控对象,而驱动器一般可以近似为一个饱和非线性环节,这时pid控制系统结构如图1.2所示。u(t)控制器y(t)受控对象r(t)e(t)图1.1 串联控制器基本结构pid控制器y(t)受控对象e(t)控制器u(t)r(t) 图1.2 pid类控制的基本结构其中,连续pid控制器的最一般形式为 (1-1)其中,和分别是对系统误差信号及其积分与微分量的加权,控制器通过这样的加权就可以计算出控制信号,驱动受控对象模型。如果控制器设计得当,则控制信号将能使得误差按减小的方向变化,达到控制的要求。图1.2中描述的系统为非线性系统,在分析时为简单起见,令饱和
5、非线性的饱和参数为,就可以忽略饱和非线性,得出线性系统模型进行分析。pid控制的结构简单,另外,这三个加权系数,和都有明显的物理意义:比例控制器直接响应于当前的误差信号,一旦发生误差信号,则控制器立即发生作用以减少偏差,的值大则偏差将变小,然而这不是绝对的,考虑根轨迹分析,无限地增大会使得闭环系统不稳定;积分控制器对以往的误差信号发生作用,引入积分控制能消除控制中的静态误差,但的值增大可能增加系统的超调量;微分控制对误差的导数,亦即变化率发生作用,有一定的预报功能,能在误差有大的变化趋势时施加合适的控制,的值增大能加快系统的响应速度,减小调节时间。连续pid控制器的laplace变成形式可以写
6、成 (1-2)在实际的过程控制中,常常将控制器的数学模型写作 (1-3)比较式(1-1)与(1-3)中可以轻易发现,。所以二者是完全等价的。对式(1-3)两端进行laplace变换,则可以推导出控制器的传递函数为 (1-4)为避免纯微分运算,经常用一阶滞后环节去近似纯微分环节,亦即将pid控制器写成 (1-5)其中n则为纯微分运算,在实际应用中n取一个较大的值就可以很好地进行近似,例如取n=10。实际仿真研究可以发现,在一般实例中,n不必取得很大,取10以上就可以较好地逼近实际的微分效果。1.2 离散pid控制器如果采样周期t的值很小,在kt时刻误差信号e(kt)的导数与积分就可以近似为 (1
7、-6) (1-7)将其代入式(1-1),则可以写出离散形式的pid控制器为 (1-8) (1-9)1.3 pid控制器的变形l 积分分离式pid控制器:在pid控制器中,积分的作用是消除静态误差,但由于积分的引入,系统的超调量也将增加,所以在实际的控制器应用中,一种很显然的想法就是:在启动过程中,如果静态误差很大时,可以关闭积分部分的作用,静态误差很小时再开启积分作用,消除静态误差,这样的控制器又称为积分分离的pid控制器。l 数字增量式pid控制器:考虑式(1-8)中给出的离散pid控制器,其中积分部分完全取决于以往所有的误差信号。计算,可以得出 (1-10)这时控制器的输出信号可以由计算出
8、来,因为新的控制器输出是由其上一部的输出加上一个增量构成,所以这类控制器又称为增量式pid控制器。l 抗积分饱和pid控制器:当输入信号的设定点发生变化,因为这时的误差信号太大,使得控制信号极快地达到传动装置的限幅。输出信号已经达到参考输入值时,误差信号变成负值,但可能由于积分器的输出过大,控制信号仍将维持在饱和非线性的限幅边界上,故使得系统的输出继续增加,直到一段时间后积分器才能恢复作用,这种现象称作积分器饱和作用,所以出现了各种各样的抗积分饱和pid控制器。第二节 过程系统的一阶延迟模型近似带有时间延迟的一阶模型(first-order lag plus delay,简称为folpd)的数
9、学表示为 (2-1) 在pid控制器的诸多算法中,绝大多数的算法都是基于folpd模型的,这主要是因为大部分过程控制模型的响应曲线和一阶系统的响应较类似,可以直接进行拟合。所以,找出获得一阶近似模拟对很多pid算法都是很必要的。本节将介绍这种近似的一些方法。2.1 由响应曲线识别一阶模型一般的过程控制对象模型的阶跃响应曲线形状如图2.1所示,对这类系统的阶跃响应曲线,可以用folpd模型来近似,可以按图中给出的方法绘制出三条虚线,从而提取模型的参数。由阶跃响应曲线去找出这样的几个参数往往带有一些主观性,因为想绘制斜线并没有准确的准则,所以其坡度选择有一定的随意性,不容易得出很好的客观模型。l+
10、tky(t)lt图2.1 带有时间延迟的一阶模型近似阶跃响应近似还可以由数据来辨识这些参数,因为该系统模型对应的阶跃响应解析可以写成 (2-2)故可以用最小二乘拟合方法由响应数据拟合出系统的folpd模型。系统的一阶模型可以用各种算法拟合系统模型的matlab函数getfolpd()来求,该函数的调用格式为 其中变量表示各种方法。对已知的阶跃响应数据,且为的受控对象模型,通过该函数的调用将直接返回一阶近似模型参数,同时将返回近似的传递函数模型。另外一种表示一阶模型的方法是nyquist图形法,从nyquist图上可以求出对象模型的nyquist图和负实轴相交点的频率和幅值,如图2.2所示,这样
11、用这两个参数就能表示一阶的近似模型了。这两个参数实际上就是系统的幅值裕量数据,可以用matlab的margin()函数来直接求取。reim1/kc图2.2 带有时间延迟的一阶模型近似nyquist图近似2.2 基于频域响应的近似方法考虑下面一阶模型的频域响应 (2-3)我们知道,在剪切频率下的极限增益实际上的是nyquist图与负实轴的第一个交点,它们满足下面的两个方程 (2-4)此外,我们知道实际上是对象模型的稳态值,该值可以直接由给出的传递函数得出。定义两个变量,与,则我们可以列出这两个未知变量满足的方程为 (2-5)我们可以由下式得出jacobian矩阵为 (2-6)这样,两个未知变量可
12、以由拟newton算法求解,在函数getfolpd()的调用中取,且将表示系统模型即可。2.3 基于传递函数的辨识方法考虑带有时间延迟的一阶环节为,求取关于变量的一阶和二阶导数,则可以得出求取各个导数在处的值,则可以发现 (2-7)式中又称为平均驻留时间,从上面的方程可以发现,。系统的增益同样可以由直接求出。在函数getfolpd()的调用中取,且将表示系统模型即可得出一阶模型。2.4 最优降阶方法通过数值最优化算法求解出这3个特征参数,在matlab函数getfolpd()中,令,且为受控对象数学模型即可得出最优一阶近似模型。2.5 传递函数近似一阶模型的拟合 假设受控对象的传递函数模型为,
13、可以用上述的四种方法得出一阶近似模型。其m文件如下:s=tf(s);g=1/(s+1)6;%对象模型输入k1,l1,t1,g1=getfolpd(1,g);g1,%曲线拟合最小二乘法结果k2,l2,t2,g2=getfolpd(2,g);g2,%基于传递函数的拟合方法k3,l3,t3,g3=getfolpd(3,g);g3,%基于频域响应的拟合方法k4,l4,t4,g4=getfolpd(4,g);g4,%次最优降阶方法step(g,-,g1,:,g2,*,g3,-,g4,-.,15)图2.3 一阶近似模型 从得出的拟合结果可以看出,采用基于传递函数的拟合方法得出的结果最差,用次最优降阶方法和
14、曲线最小二乘的拟合方法效果接近,均优于基于频域响应的拟合方法。第三节 ziegler-nichols参数整定方法3.1 ziegler-nichols经验公式早在1942年,ziegler与nichols提出了一种著名的pid类控制器整定的经验公式,在过程控制中提出了一种切实可行的方法,后来称为 ziegler-nichols整定公式,这样的方法和其改进的形式直接用于实际的过程控制。假设已经得到了系统的folpd近似模型参数和,根据相似三角形的原理就可以立即得出,这样可以根据表31设计出p,pi和pid控制器,设计方法很简单直观。根据此算法可以编写一个matlab函数 ziegler(),由该
15、函数可以直接设计出系统的pid类控制器: 其中分别对应于p,pi,pid控制器,通过选择该标示来选择控制器类型,。使用此函数可以立即设计出所需要的控制器。表31 ziegler-nichols整定公式控制器类型由阶跃响应整定由频域响应整定ppipid1/0.9/a1.2/a32/20.50.40.60.80.50.12如果已知频率响应数据,如系统的幅值裕量及其剪切频率,则可以定义两个新的量,则可以通过表31设计各种pid类控制器,也可以用前面提及的 ziegler()函数来设计,在调用时只需给出即可。3.1.1 控制器假设受控对象的传递函数模型为,利用上节的结论可知最优降阶方法的拟合方法效果较
16、好,则该受控对象的一阶近似模型为,这样由表31中给出的公式即可以设计出p,pi和pid控制器。l 由阶跃响应整定,其m文件如下: s=tf(s);g=1/(s+1)6;k=1;t=2.883;l=3.37;a=k*l/t;kp=1/a;gc=kp;step(feedback(g*gc,1)图3.1 控制器下的阶跃响应曲线l 由频域响应整定,其m文件如下:kc,b,wc,d=margin(g);tc=2*pi/wc;kp=0.5*kc;gc=kp;step(feedback(g*gc,1)图3.2 控制器下的阶跃响应曲线3.1.2 控制器l 由阶跃响应整定,其m文件如下:s=tf(s);g=1/
17、(s+1)6;k=1;t=2.883;l=3.37;a=k*l/t;kp=0.9/a;ti=3*l;gc=kp*(1+tf(1,ti 0);step(feedback(g*gc,1)图3.3 控制器下的阶跃响应曲线l 由频域响应整定,其m文件如下:kc,b,wc,d=margin(g);tc=2*pi/wc;kp=0.4*kc;ti=0.8*tc;gc=kp*(1+tf(1,ti,0);step(feedback(g*gc,1)图3.4 控制器下的阶跃响应曲线3.1.3 控制器l 由阶跃响应整定,其m文件如下:s=tf(s);g=1/(s+1)6;n=10;k=1;t=2.883;l=3.37
18、;a=k*l/t;kp=1.2/a;ti=2*l;td=0.5*l;gc=kp*(1+tf(1,ti 0)+tf(td 0,td/n 1);step(feedback(g*gc,1) kp,ti,td图3.5 控制器下的阶跃响应曲线l 由频域响应整定,其m文件如下:kc,b,wc,d=margin(g);tc=2*pi/wc;kp=0.6*kc;ti=0.5*tc;td=0.12*tc;gc=kp*(1+tf(1,ti,0)+tf(td,0,1);step(feedback(g*gc,1)kp,ti,td图3.6 控制器下的阶跃响应曲线第四节 最优pid整定算法考虑folpd受控对象模型,对某
19、一组特定的参数,可以采用数值方法对某一个指标进行优化,可以得出一组参数,修改对象模型的参数,则可以得出另外一组控制器参数,这样通过曲线拟合的方法就可以得出控制器设计的经验公式。最优化指标可以有很多可以选择的,例如时间加权的指标定义为 (4-1)其中称为ise指标,和分别称为iste和ist2e指标,另外还有常用的lae和itae指标,其定义分别为 (4-2)庄敏霞与atherton教授提出了基于式(4-1)指标的最优控制pid控制器参数整定经验公式 (4-3)对不同的范围,系数对可以由表4-1直接查出。可以看出,如果得到了对象模型的folpd近似,则可以通过查表的方法找出相应参数,代入上式就可
20、以设计出pid控制器来。该控制器一般可以直接用于原受控对象模型的控制,如果所使用的folpd模型比较精确,则pid控制器效果将接近于对folpd模型的控制。另外,该算法的适用范围为,不适合于大时间延迟系统的控制器设计,在适用范围上有一定的局限性。表4-1 设定点pid控制器参数l/t的范围0.111.12最优指标iseisteiseiseisteise1.048-0.8971.195-0.3680.4890.8881.042-0.8970.987-0.2380.3850.9060.968-0.9040.977-0.2530.3160.8921.154-0.5671.047-0.2200.490
21、0.7081.142-0.5790.919-0.1720.3840.8391.061-0.5830.892-0.1650.3150.832murrill提出了使得iae准则最小的pid控制器的算法 (4-4)该算法适合于的受控对象模型。对一般的受控对象模型,将式子中的1.435改写成3就可以拓展到其他的范围。对itae指标进行最优化,则可以得出如下的pid控制器设计经验公式 (4-5)该公式的适用范围仍然是。在范围内设计itae最优pid控制器的经验公式 (4-6)假设受控对象的传递函数模型仍为,则该受控对象的一阶近似模型为。这样可以用以上介绍的两种算法设计出pid控制器。l zhuangat
22、herton iste最优控制pid控制器,其m文件如下:s=tf(s);g=1/(s+1)6;k=1;l=3.37;t=2.883;kp=1.142*(l/t)(-0.579);ti=t/(0.919-0.172*(l/t);td=0.384*t*(l/t)0.839;gc=kp*(1+tf(1,ti,0)+tf(td,0,td/10,1);step(feedback(gc*g,1)kp,ti,td图4.1 pid控制器的阶跃响应l itae最优控制pid控制器,其m文件如下:s=tf(s);g=1/(s+1)6;k=1;l=3.37;t=2.883;kp=(0.7303+0.5307*t/
23、l)*(t+0.5*l)/(k*(t+l);ti=t+0.5*l;td=(0.5*l*t)/(t+0.5*l);gc=kp*(1+tf(1,ti,0)+tf(td,0,td/10,1);step(feedback(gc*g,1)kp,ti,td图4.2 pid控制器的阶跃响应第五节 pid控制器的实现5.1 在matlab下的仿真通过pid控制器的设计比较,可知用itae最优控制pid控制器可设计出效果较好的pid控制器。由上节可知用该算法可得控制器的传递函数为: (5-1)其绘制对数频率特性曲线(bode图)的m文件如下:clear;numc=4.8581 3.9522 0.8652;den
24、c=0 4.5680 0;numg=1;deng=1 6 15 20 15 6 1;num1,den1=series(numc,denc,numg,deng);num,den=cloop(num1,den1,-1);g=tf(num,den);w=logspace(-1,3,200);bode(g,w);grid图5.1 传递函数的bode图5.2 pid控制器的电路实现该pid控制器采用有源校正装置其电路图见图5.2。 图5.2 pid控制器的电路图 其传递函数为: (5-2)其中对式(5-1)和(5-2)比较可得: (5-3)对式(5-3)进行试凑计算可得: 则电路实现的pid控制器传递函
25、数为: (5-4)其绘制对数频率特性曲线(bode图)的m文件如下:clear;numc=3.9128 4.4932 0.8333;denc=0 4.3000 0;numg=1;deng=1 6 15 20 15 6 1;num1,den1=series(numc,denc,numg,deng);num,den=cloop(num1,den1,-1);g=tf(num,den);w=logspace(-1,3,200);bode(g,w);grid图5.3 传递函数的bode图分析图5.1和图5.3可得实际电路实现的pid控制器可达到要求的效果,电路设计成功。第六节 心得体会本次我们组的课程设计题目是:控制系统的设计与仿真。由于是专业课程设计,所以对我们以前所学的知识要求比较高,特别是对自动控制原理理论知识要有系统地理解和掌握。经过组员间的团结协作,我们组成功地完成了该课程设计。这次课程设计控制系统的设计与仿真,关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025合同制员工待遇详解
- 八年级道德与法治上册 第四单元 人身权、受教育权:美好生活最相关 第7课 伴我们一生的权利 第2框 过有尊严的生活教学设计 鲁人版六三制001
- 2024秋九年级英语上册 Module 11 Photos Unit 1 He's the boy who won the photo competition last year教学设计(新版)外研版
- 列车抛物测试题及答案
- 客户穿行测试题及答案
- 新交通法试题及答案
- 全面解析文化产业管理证书考试试题及答案
- 2021年大班科学活动纸站起来了教案反思
- 文化产业管理考试的例题解析与技巧试题及答案
- 四年级数学上册 数学好玩第1课时 滴水实验教学设计 北师大版
- (高清版)DB32∕T 2770-2015 活性炭纤维通 用技术要求与测试方法
- 文学作品的跨媒介研究-洞察分析
- 手术室护士入科汇报
- 2025年中考语文复习之小题狂练300题(选择题):文学常识(20题)
- 2024年中级消防员职业鉴定考前必刷必练题库500题(含真题、必会题)
- 天津医科大学眼科医院招聘笔试真题2023
- 精神科患者首次风险评估单
- 医院培训课件:《外科手术部位感染预防与控制》
- 幼儿园小班主题《春天的小花园》课件
- 消防救援队清洁用品配送服务投标方案(技术方案)
- 【MOOC】中央银行学-江西师范大学 中国大学慕课MOOC答案
评论
0/150
提交评论