版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、会计学1 用代入消元法解二元一次方程组公开课用代入消元法解二元一次方程组公开课 问题问题1 1:什么是:什么是二元二元一次方程?一次方程? 含有含有两个未知数两个未知数,并且所含未知数的项的,并且所含未知数的项的次数都是次数都是1 1的的 方程叫做二元一次方程。方程叫做二元一次方程。 问题问题4 4:什么是二元一次方程组的解:什么是二元一次方程组的解? 问题问题2 2:什么是二元一次方程组:什么是二元一次方程组? 把具有相同未知数的两个二元一次方程合在一起把具有相同未知数的两个二元一次方程合在一起, 就就组成组成了一个二元一次方程组了一个二元一次方程组。 二元一次方程组的两个方程的二元一次方程
2、组的两个方程的公公共解共解, ,叫做二元叫做二元 一次方程组的解一次方程组的解。 回顾与思考回顾与思考 使二元一次方程两边的值相等的两个未知数的值使二元一次方程两边的值相等的两个未知数的值, , 叫做二元一次方程的解叫做二元一次方程的解. . 问题问题3 3:什么是二元一次方程:什么是二元一次方程的解?的解? 第1页/共16页 23 310 xy xy 1.1. 把下列方程写成用含把下列方程写成用含x x的式子表示的式子表示y y的形式的形式. . (2) 课前热身课前热身 2.2.你能把上面两个方程写成用含你能把上面两个方程写成用含y y的式子表示的式子表示x x的形式的形式? ? 32 x
3、y xy31 (1) 2 3y x (1) (2) 3 1y x 3.如何解这样的方程组如何解这样的方程组 第2页/共16页 分分 析析例例1 解方程组解方程组 2y 3x = 1 x = y - 1 解:解: 把代入得:把代入得: 2y 3(y 1)= 1 2y 3y + 3 = 1 2y 3y = 1 - 3 - y = - 2 y = 2 把把y = 2代入代入,得,得 x = y 1 = 2 1 = 1 方程组的解是方程组的解是 x = 1 y = 2 2 y 3 x = 1 x = y - 1 (y-1) 谈谈思路谈谈思路 第3页/共16页 例例1 解方程组解方程组 2y 3x =
4、1 x = y - 1 2y 3x = 1 x y = 1 解:解: 把代入得:把代入得: 2y 3(y 1)= 1 2y 3y + 3 = 1 2y 3y = 1 - 3 - y = - 2 y = 2 把把y = 2代入代入,得,得 x = y 1 = 2 1 = 1 方程组的解是方程组的解是 x = 1 y = 2 谈谈思路谈谈思路 第4页/共16页 例例2 解方程解方程 组组 解:解: 由由得:得: x = 3+ y 把把代入代入得:得: 3(3+y) 8y= 14 把把y= 1代入代入,得,得 x = 3+(-1)=2 1、将方程组里的一个方程变、将方程组里的一个方程变 形,用含有一
5、个未知数的式形,用含有一个未知数的式 子表示另一个未知数;子表示另一个未知数; 2、用这个式子代替另一个方、用这个式子代替另一个方 程中相应的未知数,得到一程中相应的未知数,得到一 个一元一次方程,求得一个个一元一次方程,求得一个 未知数的值;未知数的值; 3、把这个未知数的值代入上、把这个未知数的值代入上 面的式子,求得另一个未知面的式子,求得另一个未知 数的值;数的值; 4、写出方程组的解。、写出方程组的解。 用代入法解二元一用代入法解二元一 次方程组的一般步次方程组的一般步 骤骤 变变 代代 求求 写写 x y = 3 3x -8 y = 14 9+3y 8y= 14 5y= 5 y=
6、1 方程组的解是方程组的解是 x =2 y = - 1 说说方法说说方法 第5页/共16页 y=2x-3 3x+2y=8 2x- y=5 3x +4y=2 练一练练一练 第6页/共16页 解:解:把把 代入得代入得,3x- 2(2x-3)= 8,3x- 2(2x-3)= 8 解得解得,x= ,x= 2 2 把把x = x = 2 2 代入得代入得 y=2y=22-3, y= 2-3, y= 1 1 原方程组的解为原方程组的解为 x= x= 2 2 y=2x-3 3x-2y=8 y=y=1 1 记得检验:把 x=2,y=-1代入方程 和和得得, ,看看两个方看看两个方 程的左边是否都等于程的左边
7、是否都等于 右边右边. . 第7页/共16页 解解: :由得由得,y=2x-5,y=2x-5 原方程组的解为原方程组的解为 把代入得把代入得,3x+4,3x+4( (2x-52x-5) )=2=2 解得解得,x=2,x=2 把把x=2x=2代入得代入得,y=2,y=22-5,y=-12-5,y=-1 2x- y=5 3x +4y=2 y=-1y=-1 x=2x=2 第8页/共16页 抢答抢答: 1 1方程方程-x+4y=-15-x+4y=-15用含用含y y的代数式表示的代数式表示x x为(为( ) A A-x=4y-15 B-x=4y-15 Bx=-15+4y x=-15+4y C. x=4
8、y+15 D C. x=4y+15 Dx=-4y+15x=-4y+15 C C B B 3. 3.用代入法解方程组用代入法解方程组 较为简便的方法是(较为简便的方法是( ) A A先把变形先把变形 B B先把变形先把变形 C C可先把变形,也可先把变形可先把变形,也可先把变形 D D把、同时变形把、同时变形 B B 2 2将将y=-2x-4y=-2x-4代入代入3x-y=53x-y=5可得(可得( ) A.3x-A.3x-(2x+42x+4)=5 B. 3x-=5 B. 3x-(-2x-4-2x-4)=5=5 C.3x+2x-4=5 C.3x+2x-4=5 D. 3x-2x+4=5D. 3x-
9、2x+4=5 2x+5y=212x+5y=21 x +3y=8x +3y=8 第9页/共16页 能力检测能力检测 2 2、如果、如果y + 3x - 2+5x + 2y -2=0y + 3x - 2+5x + 2y -2=0, 求求 x 、y的的 值值. 1、若方程、若方程5x 2m+n+4y 3m-2n = 9是关于是关于x、y的的 二元一次方程,二元一次方程,求求m 、n 的值的值. 第10页/共16页 11 1、若方程、若方程5x m-2n+4y 3n-m = 9是关于是关于x、y的二元一次方程,的二元一次方程, 求求m 、n 的值的值. 解:解:由题意知 由题意知, m - 2n =
10、1 3n 3n m = 1 m = 1 由得:由得: 把代入得:把代入得: m = 1 +2n 3n (1 + 2n)= 1 3n 1 2n = 1 3n-2n = 1+1 n = 2 把把n =2 代入,得:代入,得: m = 1 +2nm = 1 +2n 能力检测能力检测 5221 m m =5 n n=2 即即m 的值是的值是5,n 的值是的值是4. 第11页/共16页 2、如果、如果 y + 3x - 2 + 5x + 2y -2 = 0,求,求 x 、y 的值的值. 解:解:由题意知由题意知, y + 3x 2 = 0 5x + 2y 2 = 0 由得:由得:y = 2 3x 把代入
11、得:把代入得: 5x + 2(2 3x)- 2 = 0 5x + 4 6x 2 = 0 5x 6x = 2 - 4 -x = -2 x = 2 把把x = 2 代入,得:代入,得: y= 2 - 32 y= -4 x = 2 y = -4 即即x 的值是的值是2,y 的值是的值是-4. 能力检测能力检测 第12页/共16页 通过本节课的研究通过本节课的研究, ,学习学习, ,你有你有 哪些收获?哪些收获? 基本思路基本思路: : 一般一般步骤步骤: 变形技巧:变形技巧: 选择选择系数比较简单系数比较简单的方程进行变形。的方程进行变形。 ; 423 2 ) 1 ( yx x ; 742 5 ) 2 ( yx yx ; 523 3 ) 3 ( yx yx ; 533 736 )4( yx yx . 134 523 ) 5( yx
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度购物中心小卖部供应链管理及品牌合作合同3篇
- 二零二五年度高品质联购房协议书
- 2025年水电装修与室内空气净化及消毒合同3篇
- 珠宝店2025年度装修工程合同保密条款与信息保护合同3篇
- 2025年商标保护监管服务合同
- 2025年快递合同附条件赠与协议
- 2025年乡村旅游开发合同
- 2025年分销协议文字
- 2025年度绿色环保毛坯店面租赁合同模板2篇
- 二零二五版体育产业劳动合同变更及赛事运营协议3篇
- 外科医生年终述职总结报告
- 横格纸A4打印模板
- CT设备维保服务售后服务方案
- 重症血液净化血管通路的建立与应用中国专家共识(2023版)
- 儿科课件:急性细菌性脑膜炎
- 柜类家具结构设计课件
- 陶瓷瓷砖企业(陶瓷厂)全套安全生产操作规程
- 煤炭运输安全保障措施提升运输安全保障措施
- JTGT-3833-2018-公路工程机械台班费用定额
- 保安巡逻线路图
- (完整版)聚乙烯课件
评论
0/150
提交评论