




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二项式定理专题(教师版)二项式定理专题一、基础知识1二项式定理:,2基本概念:二项式展开式:右边的多项式叫做的二项展开式。二项式系数:展开式中各项的系数.项数:共项,是关于与的齐次多项式通项:展开式中的第项叫做二项式展开式的通项。用表示。3注意关键点:项数:展开式中总共有项。顺序:注意正确选择,其顺序不能更改。与是不同的。指数:的指数从逐项减到,是降幂排列。的指数从逐项减到,是升幂排列。各项的次数和等于.系数:注意正确区分二项式系数与项的系数,二项式系数依次是项的系数是与的系数(包括二项式系数)。4常用的结论:令 令 5性质:二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即,二
2、项式系数和:令,则二项式系数的和为, 变形式。奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令,则,从而得到:奇数项的系数和与偶数项的系数和:二项式系数的最大项:如果二项式的幂指数是偶数时,则中间一项的二项式系数取得最大值。 如果二项式的幂指数是奇数时,则中间两项的二项式系数,同时取得最大值。系数的最大项:求展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别为,设第项系数最大,应有,从而解出来。二、专题练习(一)二项式定理的逆用;例:解:与已知的有一些差距, 练:解:设,则(二)利用通项公式求的系数;例:在二项式的展开式中倒数第项的系数为,求含有的项的系数?解:由条件知
3、,即,解得,由,由题意,则含有的项是第项,系数为。练:求展开式中的系数?解:,令,则故的系数为。(三)利用通项公式求常数项;例:求二项式的展开式中的常数项?解:,令,得,所以练:求二项式的展开式中的常数项?解:,令,得,所以练:若的二项展开式中第项为常数项,则解:,令,得.(四)利用通项公式,再讨论而确定有理数项;例:求二项式展开式中的有理项?解:,令,()得,所以当时,当时,。(五)奇数项的二项式系数和=偶数项的二项式系数和;例:若展开式中偶数项系数和为,求.解:设展开式中各项系数依次设为 ,则有,,则有 将-得: 有题意得,。练:若的展开式中,所有的奇数项的系数和为,求它的中间项。解:,解
4、得 所以中间两个项分别为,(六)最大系数,最大项;例:已知,若展开式中第项,第项与第项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?解:解出,当时,展开式中二项式系数最大的项是,当时,展开式中二项式系数最大的项是,。练:在的展开式中,二项式系数最大的项是多少?解:二项式的幂指数是偶数,则中间一项的二项式系数最大,即,也就是第项。练:在的展开式中,只有第项的二项式最大,则展开式中的常数项是多少?解:只有第项的二项式最大,则,即,所以展开式中常数项为第七项等于练:写出在的展开式中,系数最大的项?系数最小的项?解:因为二项式的幂指数是奇数,所以中间两项()的二项式系数相等,且同时取
5、得最大值,从而有的系数最小,系数最大。练:若展开式前三项的二项式系数和等于,求的展开式中系数最大的项?解:由解出,假设项最大,化简得到,又,展开式中系数最大的项为,有练:在的展开式中系数最大的项是多少?解:假设项最大,化简得到,又,展开式中系数最大的项为(七)含有三项变两项;例:求当的展开式中的一次项的系数?解法:,当且仅当时,的展开式中才有x的一次项,此时,所以得一次项为它的系数为。解法: 故展开式中含的项为,故展开式中的系数为240.练:求式子的常数项?解:,设第项为常数项,则,得, .(八)两个二项式相乘;例:解: .练:解:.练:解:(九)奇数项的系数和与偶数项的系数和;例:解:(十)赋值法;例:设二项式的展开式的各项系数的和为,所有二项式系数的和为,若,则等于多少?解:若,有, 令得,又,即解得,.练:若的展开式中各项系数之和为,则展开式的常数项为多少?解:令,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳航空航天大学《临床检验基础实验》2023-2024学年第二学期期末试卷
- 四川省成都十八中学2025届初三第一次模拟(适应性测试)考试物理试题试卷含解析
- 2025年辽宁省大连高新园区四校联考初三5月联合考试物理试题试卷含解析
- 四川省成都市重点中学2025年高考全国卷信息归集与高考命题预测-语文试题卷含解析
- 山东艺术学院《家禽生产学》2023-2024学年第二学期期末试卷
- 江西应用工程职业学院《影视剪辑艺术》2023-2024学年第二学期期末试卷
- 生产管理部年中总结
- 河北省保定市2025届数学三下期末复习检测试题含解析
- 辽宁生态工程职业学院《矿井运输与提升》2023-2024学年第二学期期末试卷
- 肥料管理办法课件
- 免检物料管理规范(含表格)
- 频谱仪N9020A常用功能使用指南
- CBL教学法应用介绍
- 三九医药连锁药店整体发展战略
- 钢轨廓形检测仪-说明书
- 新版抖音小店操作
- 高中语文常见120个实词
- GB/T 36089-2018丙烯腈-丁二烯橡胶(NBR)
- 2022年国家义务教育质量检测练习卷1八年级音乐练习卷
- 水利工程施工组织设计技术标(完整版)
- 【中小学】校内论坛、讲坛、讲座、年会、报告会、研讨会等管理制度
评论
0/150
提交评论