




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 1.2 .常用逻辑用语一、知识导学1 .逻辑联结词:“且”、“或”、“非”分别用符号“” ” ”表示.2 .命题:能够判断真假的陈述句.3 .简单命题:不含逻辑联结词的命题4 .复合命题:由简单命题和逻辑联结词构成的命题,复合命题的基本形式:p或q; p且q;非p5 .四种命题的构成:原命题:若 p则q;逆命题:若q则p;否命题:若p则q ;逆 否命题:若一q则一1 p.6 .原命题与逆否命题同真同假,是等价命题,即“若 p则q” = 若q则lp ” .7 .反证法:欲证“若 p则q”,从“非q”出发,导出矛盾,从而知“若 p则非q”为假, 即“若p则q”为真.8 .充分条件与必要条件 :p
2、 = q : p是q的充分条件;q是p的必要条件;p=q : p是q的充要条件.9 .常用的全称量词:“对所有的”、“对任意一个” “对一切” “对每一个” “任给”等;并 用符号”表示.含有全称量词的命题叫做全称命题 .10 .常用的存在量词:“存在一个”、“至少有一个”、“有些”、“有一个”、“有的”、“对某 个”;并用符号 ”表示.含有存在量词的命题叫做特称命题 .二、疑难知识导析1 .基本题型及其方法(1)由给定的复合命题指出它的形式及其构成;(2)给定两个简单命题能写出它们构成的复合命题,并能利用真值表判断复合命题的真假;(3)给定命题,能写出它的逆命题、否命题、逆否命题,并能运用四
3、种命题的相互关系,特别 是互为逆否命题的等价性判断命题的真假.注意:否命题与命题的否定是不同的.(4)判断两个命题之间的充分、必要、充要关系;方法:利用定义(5)证明p的充要条件是q ;方法:分别证明充分性和必要性(6)反证法证题的方法及步骤:反设、归谬、结论.反证法是通过证明命题的结论的反面不成立 而肯定命题的一种数学证明方法,是间接证法之一.注:常见关键词的否定:关键词是都是(全是)()至少有一个至多个任意存在否定不是不都是(全是)()一个也没有至少有两个存在任意2.全称命题与特称命题的关系:全称命题p: x m,p(x),它的否定 p: x m , p(x);特称命题p: x m,p(x
4、), 它的否定 p: x m , p(x);即全称命题的否定是特称命题,特称命题的否定是全称命 题.否定一个全称命题可以通过“举反例”来说明 、经典例题导讲例1把命题“全等三角形一定相似”写成“若 p则q”的形式,并写出它的逆命题、否命题与逆否命题.错解:原命题可改写成:若两个三角形全等,则它们一定相似逆命题:若两个三角形相似,则它们全等.否命题:若两个三角形不一定全等,则它们不一定相似逆否命题:若两个三角形不一定相似,则它们不一定全等错因:对“一定”的否定把握不准,“一定”的否定“一定不”,在逻辑知识中求否定相当于求补集,而“不一定”含有“一定”的意思.对这些内容的学习要多与日常生活中的例子
5、作比较,注意结合集合知识.因而否命题与逆否命题错了 .正解:否命题:若两个三角形不全等,则它们不相似逆否命题:若两个三角形不相似,则它们不全等例2将下列命题改写成“若 p则q”的形式,并写出否命题.ao时,函数y=ax+b的值随 x值的增加而增加.错解:原命题改为:若 ao时,x的值增加,则函数 y=ax+b的值也随着增加.错因:如果从字面上分析最简单的方法是将ao看作条件,将“随着”看作结论,而 x的值增加,y的值也增加看作研究的对象,那么原命题改为若 ao时,则函数y=ax+b的值随着x的值增加而增加,其否命题为若a 。时,则函数y=ax+b的值不随x值的增加而增加.此题错解在注意力集中在
6、“增加”两个字上,将x值的增加当做条件,又不把 ao看作前提,就变成两个条件的命题,但写否命题时又没按两个条件的规则写,所以就错了正解:原命题改为:ao时,若x的值增加,则函数 y=ax+b的值也随着增加.否命题为:ao时,若x的值不增加,则函数 y=ax+b的值也不增加.原命题也可改为:当 x的值增加时,若ao,则函数y=ax+b的值也随着增加.否命题为:当x增加时,若a o,则函数y=ax+b的值不增加.2h,命题乙为:两个实数 a、b例3已知h0,设命题甲为:两个实数 a、b满足a满足a 11 h且b 11 h ,那么a.甲是乙的充分但不必要条件b .甲是乙的必要但不充分条件c.甲是乙的
7、充要条件d .甲是乙的既不充分也不必要条件错解:a b 2h (a 1) (b 1) 2h h h |a 1| h,|b 1| h关键词是都是(全是)()至少有一个至多个任意存在否定不是不都是(全是)()一个也没有至少有两个存在任意12.全称命题与特称命题的关系:全称命题p: x m,p(x),它的否定 p : x m , p(x);特称命题p: x m , p(x), 它的否定 p : x m , p(x);即全称命题的否定是特称命题,特称命题的否定是全称命 题.否定一个全称命题可以通过“举反例”来说明 、经典例题导讲例1把命题“全等三角形一定相似”写成“若 p则q”的形式,并写出它的逆命题
8、、否命题与逆否命题.错解:原命题可改写成:若两个三角形全等,则它们一定相似逆命题:若两个三角形相似,则它们全等.否命题:若两个三角形不一定全等,则它们不一定相似逆否命题:若两个三角形不一定相似,则它们不一定全等错因:对“一定”的否定把握不准,“一定”的否定“一定不”,在逻辑知识中求否定相当于求补集,而“不一定”含有“一定”的意思.对这些内容的学习要多与日常生活中的例子作比较,注意结合集合知识.因而否命题与逆否命题错了 .正解:否命题:若两个三角形不全等,则它们不相似逆否命题:若两个三角形不相似,则它们不全等例2将下列命题改写成“若 p则q”的形式,并写出否命题.ao时,函数y=ax+b的值随
9、x值的增加而增加.错解:原命题改为:若 ao时,x的值增加,则函数 y=ax+b的值也随着增加.错因:如果从字面上分析最简单的方法是将ao看作条件,将“随着”看作结论,而 x的值增加,y的值也增加看作研究的对象,那么原命题改为若 ao时,则函数y=ax+b的值随着x的值增加而增加,其否命题为若a 。时,则函数y=ax+b的值不随x值的增加而增加.此题错解在注意力集中在“增加”两个字上,将x值的增加当做条件,又不把 ao看作前提,就变成两个条件的命题,但写否命题时又没按两个条件的规则写,所以就错了正解:原命题改为:ao时,若x的值增加,则函数 y=ax+b的值也随着增加.否命题为:ao时,若x的
10、值不增加,则函数 y=ax+b的值也不增加.原命题也可改为:当 x的值增加时,若ao,则函数y=ax+b的值也随着增加.否命题为:当x增加时,若a o,则函数y=ax+b的值不增加.2h,命题乙为:两个实数 a、b例3已知h0,设命题甲为:两个实数 a、b满足a满足a 11 h且b 11 h ,那么a.甲是乙的充分但不必要条件b .甲是乙的必要但不充分条件c.甲是乙的充要条件d .甲是乙的既不充分也不必要条件错解:a b 2h (a 1) (b 1) 2h h h |a 1| h,|b 1| h故本题应选c.错因:(1)对充分、必要、充要条件的概念分不清,无从判断,凭猜测产生错误;(2)不能运
11、用绝对值不等式性质作正确推理而产生错误a 1所以正解:因为b 1两式相减得2hb 2h2h即由命题甲成立推出命题乙成立,所以甲是乙的必要条件 由于同理也可得a b 2h因此,命题甲成立不能确定命题乙一定成立,所以甲不是乙的充分条件,故应选b.例4已知命题甲:a+b 4,命题乙:a 1且b 3,则命题甲是命题乙的 .错解:由逆否命题与原命题同真同假知,若a=1且b=3则a+b=4成立,所以命题甲是命题乙的充分不必要条件.错因:对命题的否定不正确.a 1且b 3的否定是a=1或b=3.正解:当a+b 4时,可选取a=1,b=5 ,故此时a 1且b 3不成立(a=1).同样,a 1,且b 3时,可选
12、取a=2,b=2,a+b=4 ,故此时a+b=4.因此,甲是乙的既不充分也不必要条件.注:a 1且b 3为真时,必须a 1 ,b 3同时成立.例5已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件,那么 p是q成立的 ()a.充分不必要条件 b.必要不充分条件 c.充要条件d.既不充分也不必要条件分析:本题考查简易逻辑知识.因为p r s q但r成立不能推出p成立,所以p q ,但q成立不能推出p成立,所 以选a解:选a例6已知关于x的一元二次方程 (mc z) mx4x+4=0 x2 4m杆 4n24m- 5=0求方程和都有整数解的充要条件.解:方程有实根的充要条件是16 4 4
13、 m 0,解得m 1.5方程有头根的充要条件是16m之4(4m2 4m 5) 0 解得m .45一 m 1.而m z,故 m=1 或 m=0 或 m=1.4当m= 1时,方程无整数解.当m=0时,无整数解;当m=1时,都有整数.从而都有整数解 m=1.反之,m=1都有整数解.都有整数解的充要条件是m=1.例7用反证法证明:若a、b、c r,且x a2 2b 1, y b2 2c 1,2z c 2a 1 ,则x、y、z中至少有一个不小于 0.证明:假设x、y、z均小于0,即:xa22b10一;yb22c10-;zc22a10; + + 得 x y z (a 1)2 (b 1)2 (c 1)2 0
14、,这与(a 1)2 (b 1)2 (c 1)20 矛盾,则假设不成立,.x、y、z中至少有一个不小于 0.例8已知命题p:方程x2+m杆1=0有两个不等的负根;命题 q:方程4x2+4( m-2)x+1=0无实根.若 p或q”为真,“p且q”为假,求m的取值范围.分析:“ p或q”为真,则命题p q至少有一个为真,“ p且q”为假,则命题p、q至少 有一为假,因此,两命题 p、q应一真一假,即命题 p为真,命题q为假或命题p为假,命 题q为真.“ 2m2 4 0口解:右万程x+m杆1=0有两不等的负根,则解得m2,m 0即命题p: m 2若方程4x2+ 4( mr 2)x+1 = 0无实根,则
15、 a = 16(mr 2)216= 16(m 4m 3)v0解得:1v rk 3.即 q: 1v rk 3.因“ p或q”为真,所以p、q至少有一为真,又“ p且q”为假,所以命题 p、q至少有一为假,因此,命题p、q应一真一假,即命题 p为真,命题q为假或命题p为假,命题q为真.m 23 m 2, 或m 1或m 31 m 3解得:nb3 或 1vms 2.四、典型习题导练21 .万程mx 2x 10至少有一个负根,则()a. 0 m 1 或 m 0 b. 0 m 1 c. m 1 d. m 12 . “ x2 3x 2 0” 是 “ x 1 或x 4” 的()a.充分不必要条件 b.必要不充
16、分条件3.三个数a,b,c不全为0的充要条件是a. a,b,c都不是0.c. a,b,c中只有一个是0.c.充要条件d.既不充分也不必要条件( )b. a, b,c中至多一个是 0.d. a, b,c中至少一个不是 0.4 .由命题p:6是12的约数,q:6是24的约数,构成的“p或q”形式的命题是:“p且q”形式的命题是 _ ,“非p”形式的命题是 _.5 .若a,b r ,试从22_a. ab 0 b. a b 0 c. a b 0 d. ab 0 e. a b 0 f. a2 b2 0中,选出适合下列条件者,用代号填空:(1)使a,b都为0的充分条件是 ;(2)使a,b都不为0的充分条件是 ;(3)使a, b中至少有一个为 0的充要条件是 ;(4)使a,b中至少有一个不为 0的充要条件是 .6 .分别指出由下列各组命题构成的逻辑关联词“或”、“且”、“非”的真假.(1) p:梯形有一组对边平行;q
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 管道工程行业热点问题研究考核试卷
- 清洁能源消纳策略与电力市场机制考核试卷
- 海洋油气钻采工程风险管理与保险考核试卷
- 煤炭资源勘探技术考核试卷
- 太阳能并网发电技术考核试卷
- 海底工程作业平台的稳定性分析考核试卷
- 毛条染色工艺与设备操作考核试卷
- 畜牧良种繁殖与农业科技创新政策考核试卷
- 辽宁师范大学海华学院《内科学A》2023-2024学年第二学期期末试卷
- 南京传媒学院《Spark大数据技术与应用》2023-2024学年第二学期期末试卷
- 《服务营销双主动》课件
- 采油工程试题及答案
- 小学科学阅读试题及答案
- 找最小公倍数案例北师大五年级下册数学
- 基因组学在临床的应用试题及答案
- 公司法公章管理制度
- 统编版2024-2025学年语文六年级下册期中测试卷试题(有答案)
- 演出经纪人员资格备考资料2025
- 大模型关键技术与应用
- DB51T 1466-2012 马尾松二元立木材积表、单木出材率表
- 人教版语文六年级下册《第五单元》大单元整体教学设计2022课标
评论
0/150
提交评论