第3章 投影变换---换面法_第1页
第3章 投影变换---换面法_第2页
第3章 投影变换---换面法_第3页
第3章 投影变换---换面法_第4页
第3章 投影变换---换面法_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、广 东 技 术 师 范 学 院 天 河 学 院教 案 2012 年 月 日第 周第三章投影变换换面法本章教学目的及基本要求:掌握换面法的基本概念,点的换面,直线的换面及空间几何问题综合练习本章教学内容的重点和难点: 一、本章重点:1换面法的基本概念2点的换面,直线的换面3空间几何问题综合练习。二、本章难点:1换面法的基本概念2空间几何问题综合练习本章教学内容的深化和拓宽: 养成良好的习惯,严谨的工作作风本章教学方法、方式: 讲授法,演示法教学、习题集作业、手工绘图本章主要参考资料: 1. 机械制图(第六版)大连理工大学编高等教育出版社出版 2. 机械制图(第三版)刘力主编高等教育出版社出版 3

2、. 画法几何学(第六版)大连理工大学编高等教育出版社出版单 元 教 案 首 页 2012年 月 日第 周课题: 3.1换面法的基本概念 3.2点的换面 3.3直线的换面 课次:教学方法: 讲授法,演示法 教具: 尺,规教学目的:掌握换面法的基本概念,点的换面,直线的换面 教学重点:1.点的换面2.直线的换面 教学难点:换面法的基本概念点的换面直线的换面教学过程时间分配(包括组织教学:复习旧课、作业问题分析、讲授新课、新课小结、布置作业) 讲授新课: 80分钟 小结、布置作业: 10分钟课后记: 第三章投影变换换面法第一节 换面法的基本概念一、 换面法的基本概念 空间几何元素的位置保持不变,用新

3、的投影面来代替旧的投影面,使空间几何元素对新的投影面的相对位置变成有利于解题的位置,然后找出其在新投影面上的投影。这种方法称为换面法。 用换面解题时应遵循下列两原则:选择新投影面时,应使几何元素处于有利于解题的位置;新投影面必须垂直于原投影面体系中不被变换的投影面,并与它组成新投影面体系,必要时可连续变换。(a) (b)图3.1 将一般位置直线变换成投影面平行线如图3.1,新投影面必须垂直于不变换的投影面,即V1H,X1为新投影轴。这时,不变换投影面上的投影a、b与V1面上的新投影a1、b1的投影连线a a1X1、b b1X1。并且a1、b1到X1的距离等于被代替的投影a、b到被代替的投影轴的

4、距离,即a1aX1aaXAaZA, b1bX1bbXBbZB。第二节 点的换面二、点的投影变换规律 (一)点的一次变换点是一切几何形体的基本元素。因此,必须首先掌握点的投影变换规律。现在来研究更换正立投影面时,点的投影变换规律。图3表示点A在V/H体系中,正面投影为a,水平投影为a。现在令H面不变,取一铅垂面V1(V1H)来代替正立投影面V,形成新投影面体系V1/H。将点A向V1投影面投射,得到新投影面上的投影a1。这样,点A在新、旧两体系中的投影(a,a1)和(a,a)都为已知。其中a1为新投影,a为旧投影,而a为新、旧体系中共有的不变投影。它们之间有下列关系: 1. 由于这两个体系具有公共

5、的水平面H,因此点A到H面的距离(即z坐标),在新旧体系中都是相同的,即aax=Aa=a1ax1。2. 当V1面绕X1轴重合到H面时,根据点的投影规律可知aa1必定垂直于X1轴。这和aaX轴的性质是一样的。根据以上分析,可以得出点的投影变换规律: 1. 点的新投影和不变投影的连线,必垂直于新投影轴。 2. 点的新投影到新投影轴的距离等于被更换的旧投影到旧投影轴的距离。根据上述规律,由V/H体系中的投影(a,a)求出V1/H体系中的投影的作图法为: 首先按要求条件画出新投影轴X1,新投影轴确定了新投影面在投影图上的位置。然后过点a 作aa1X1,在垂线上截取a1ax1=aax,则a1即为所求的新

6、投影。水平投影a为新、旧两投影体系所共有。 上图表示更换水平投影面。取正垂面H1来代替H面,H1面和V面构成新投影体系V/H1,求出其新投影a1。因新、旧两体系具有公共的V面,因此a1ax1=Aa=aax。 (二)点的两次变换在运用换面法去解决实际问题时,更换一次投影面,有时不足以解决问题,而必须更换两次或更多次。右图表示更换两次投影面时,求点的新投影的方法,其原理和更换一次投影面是相同的。必须指出:在更换多次投影面时,新投影面的选择除必须符合前述的两个条件外,还必须是在一个投影面更换完以后,在新的两面体系中交替地再更换另一个。如在图6-4中先由V1面代替V面,构成新体系V 1/H;再以这个体

7、系为基础,取H2面代替H面,又构成新体系V 1/H2。第三节 直线的换面以上讨论了换面法的基本原理和点的投影变换规律。这里再讨论把一般位置直线或平面变为特殊位置。这是解题时经常要遇到的问题。这类问题共有四个:把一般位置直线变为投影面平行线;把一般位置直线变为投影面垂直线;把一般位置平面变为投影面垂直面;把一般位置平面变为投影面平行面。(一)把一般位置直线变为投影面平行线 如右图所示,直线AB在V/H体系中为一般位置直线,取V1面代替V面,使V1面平行直线AB并垂直于H面。此时,AB在新体系V1/H中成为新投影面的平行线。求出AB在V1面上的投影a1b1,则a1b1反映线段AB的实长,并且a1b

8、1和X1轴的夹角即为直线AB和H面的夹角。表示把一般位置直线变为投影面平行线的投影图的作法。首先画出新投影轴X1,X1必须平行于ab,但和ab间的距离可以任取。然后分别求出线段AB两端点的投影a1和b1,连a1b1即为线段的新投影。假如不更换正立投影面,而更换水平投影面,同样可以把它变成新投影面的平行线,右图表示了投影图的作法。 例 已知直线AB的两面投影ab和ab,求作AB的实长及其对V面的倾角,如图(二)把一般位置直线变为投影面垂直线欲把一般位置直线变为投影面垂直线,显然,只换一次投影面是不行的。若选新投影面P直接垂直于一般位置直线AB,则平面P也是一般位置平面,它和原体系中的任一投影面不

9、垂直,因此不能构成新的投影面体系。如果所给的是一条投影面平行线,要变为投影面垂直线,则更换一次投影面即可。如右图所示,由于AB为正平线,因此所作垂直于直线AB的新投影面H1必垂直于原体系中的V面,这样AB在V/H1体系中变为投影面垂直线。其投影图作法见右图,根据投影面垂直线的投影特性,取X1ab,然后求出AB在H1面上的新投影a1b1,a1b1必重合为一点。 要把一般位置直线变为投影面垂直线,必须更换两次投影面,见右图。第一次把一般位置直线变为投影面V1的平行线;第二次再把投影面平行线变为投影面H2的垂直线。 单 元 教 案 首 页 2012年 月 日第 周课题: 3.4平面的换面 课次:教学

10、方法: 讲授法,演示法 教具: 尺,规教学目的:掌握平面的换面法 教学重点:. 平面的换面 教学难点:换面法的基本方法教学过程时间分配(包括组织教学:复习旧课、作业问题分析、讲授新课、新课小结、布置作业) 讲授新课: 80分钟 小结、布置作业: 10分钟课后记: 第四节平面的换面(一)把一般位置平面变为投影面垂直面右图表示把一般位置平面ABC变为投影面垂直面的情况。为了使三角形变为投影面垂直面,只需使属于该平面的任意一条直线垂直于新投影面。我们知道,要把一般位置直线变为投影面垂直线,必须更换两次投影面,而把投影面平行线变为投影面垂直线只需更换一次投影面。因此,我们在面上任取一条投影面平行线(正

11、平线AI)为辅助线,取与它垂直的H1面为新投影面,三角形也就和新投影面垂直。 把ABC变为投影面垂直面的作图过程。首先在ABC上取一条正平线AI(a1,a1),然后使新投影轴X1a1,这样ABC在V/H1体系中就成为投影面垂直面。求出ABC三顶点的新投影a1、b1、c1,则a1b1c1必在同一直线上。并且a1b1c1和X1轴的夹角即为ABC对V面的夹角。 (二)把一般位置平面变为投影面平行面平行面如果要把一般位置平面变为投影面平行面,只更换一次投影面也是不行的。必须更换两次投影面。第一次把一般位置平面变为投影面垂直面,第二次再把投影面垂直面变为投影面平行面。 图表示把ABC变为投影面平行面的作

12、图过程。第一次变为投影面垂直面;第二次变为投影面平行面,根据投影面平行面投影特性,取轴X2b1a1c1,作出ABC三顶点在V2面的新投影a2b2c2,则a2b2c2便反映ABC的实形。 把投影面垂直面变为投影面平行面,只需更换一次投影面求投影面垂直面的实形在适当位置作新投影轴X1abc;作出ABC各顶点的新投影a1b1c即为所求。(a) (b) 求垂直面的实形单 元 教 案 首 页 2012年 11 月 日第 14 周课题:第五节空间几何问题综合分析 课次:19教学方法: 讲授法,演示法 多媒体教学目的:掌握空间几何问题综合分析方法 教学重点:空间几何问题综合分析方法 教学难点:空间几何问题综

13、合分析方法教学过程时间分配(包括组织教学:复习旧课、作业问题分析、讲授新课、新课小结、布置作业) 讲授新课: 80分钟 小结、布置作业: 10分钟课后记: 第五节空间几何问题综合分析工程实际抽象出来的几何问题,如距离、角度的度量;点、线、面的定位等,并不是单纯的平行、相交、垂直问题,而多是较复杂的综合问题,其突出特点是要受若干条件的限制,求解时往往要同时满足几个条件。解决此类问题的方法通常是:分析、确定解题方案及投影图上实现。分析是十分重要的,首先根据给出已知条件和求解要求,想出已知空间几何模型,然后进行空间思维,想象出最终结果的空间几何模型,再分析确定从已知几何模型到最终结果几何模型的空间解

14、题步骤。如果最终结果几何模型很难直接确定,则常用“轨迹法”,即逐个满足限制条件,找出满足每一个条件的无数解答的集合(通常称之为该条件的轨迹),弄清该集合是什么形状,在投影图上如何实现;多个条件则形成多个轨迹,这些轨迹的交集即为所求结果。解题中的常见轨迹如下:1、过定点与定直线相交的直线的轨迹为一平面。2、与定平面平行(等距)的直线的轨迹为其平行面。3、与两相交直线或两相交平面等距的点的轨迹为其角平分面。4、题目中若出现正方形、矩形、菱形、等腰三角形、等边三角形、到两点等距等,它们的轨迹通常为一直线的垂面。因为这些几何图形都具有垂直要素,例如:菱形的对角线垂直平分;等腰三角形底边上的高垂直于底边

15、等。5、与定直线等距的点的轨迹为一圆柱面。6、与定直线平行,且距离为定长的直线的轨迹为圆柱面。7、与定直线距离为定长的直线的轨迹为一圆柱面的切平面。8、过一点和定直线或定平面保持固定夹角的直线的轨迹为圆锥面。9、与定点等距的点的轨迹为圆球面。以下讨论综合问题的解法。在解法举例中,一些典型例题采用了两种解法( 在V/H投影体系中直接解题; 应用换面法解题),只要将空间几何元素之间的关系分析清楚,无论采用何种解法均可。综合问题解法举例(一)一、求实形及倾角1.直角三角形法,(最大斜度线)2.换面法二、距离和角度的度量 解决距离和角度的度量问题,主要基础是根据直角投影定理作平面的法线或直线的垂面,并

16、求其实长或实形。(一)距离的度量常见的距离问题有点到点之间的距离、点到直线(包括两平行直线)之间的距离、两交叉直线之间的距离、点到面(包括直线平行平面和两平行平面)之间距离。1、点到点之间的距离如图所示,将点A及点B相连得线段AB,求出线段AB实长,即为所求点A到点B之间的距离。2、点到直线之间的距离如图所示,过点E作平面P垂直于直线CD;求出直线CD与平面P的垂足F;连点和E点F得到直线段EF并求出其实长,即为所求点到直线之间的距离。例8. 求两平行直线AB和CD之间的距离。 解题思路一: 解题思路二 3、两交叉直线之间的距离如图所示,包含直线CD作一平面P平行于直线AB;在直线AB上任取一

17、点M,过点M做平面P的法线MN,并求出垂足N;再求出直线段MN的实长,即为所求两交叉直线之间的距离。 例求两交叉直线AB和CD的距离,并定出它们的公垂线的位置。解法一解法二4、点到平面(包括直线平行平面和两平行平面之间)的距离如图所示,过点A作平面Q的法线AB;求出垂足B后,再求出直线段AB的实长,即为所求点到平面之间的距离。 5、直线到平行平面之间的距离。 关于平行于平面的直线到平面之间的距离,实质仍是点到平面间的距离。在直线CD、平面P上任取一点A,问题就转化为点到平面之间的距6、两平行平面间的距离。 两平行平面之间的距离,实质仍是点到平面间的距离。在直线CD、平面P上任取一点A,问题就转

18、化为点到平面之间的距离。(二)角度的度量常见的角度问题有两相交直线间的夹角、直线与平面间的夹角及两平面间的夹角。 1、两相交直线间的夹角如图所示,任作与两相交直线AB、AC相交的直线EF,构成AEF;再作出AEF的实形;AEF中的EAF便是所求两相交直线间的夹角。2、直线与平面间的夹角初等几何中曾定义:直线和它在平面上的投影所夹的锐角,称为直线与平面间的夹角。如图所示,任取属于直线HG的一点H,由点H作平面P的法线HO;求出直线HO和HG的夹角;的余角便是直线与平面间的夹角。例 求直线HG与平面的夹角,平面由四边形ABCD给定例 求直线AB与平面DEF之间的夹角 3、两平面间的夹角两平面的夹角就是两平面形成的二面角的平面角。如图所示,在空间任取一点L,过点L分别作平面P和Q的法线LM和LN,两相交直线LM和LN所确定的平面S是P、Q两平面的公垂面,即是平面角所在的平面;求出两相交

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论