




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 不等式分式与分式方程【考纲说明】1. 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程;2. 利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算【趣味链接】【知识梳理】一不等式部分考点一、不等式的相关概念1不等式 用不等号连接起来的式子叫做不等式 常见的不等号有五种: “”、 “” 、 “” 、 “”、 “”2不等式的解与解集 不等式的解:使不等式成立的未知数的值,叫做不等式的解不等式的解集:一个含有未知数的不等式的解的全
2、体,叫做不等式的解集不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左.3解不等式 求不等式的解集的过程或证明不等式无解的过程,叫做解不等式.要点诠释:不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值考点二、不等式的性质性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如ab,那么acbc性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果ab,c0,那么acbc(或)性质3:不等式两边乘以(或除
3、以)同一个负数,不等号的方向改变,即如果ab,c0,那么acbc(或)要点诠释:(1)不等式的其他性质:若ab,则ba;若ab,bc,则ac;若ab,且ba,则a=b;若a20,则a=0;若ab0或,则a、b同号;若ab0或,则a、b异号.(2)任意两个实数a、b的大小关系:a-bOab;a-b=Oa=b;a-bOab不等号具有方向性,其左右两边不能随意交换:但ab可转换为ba,cd可转换为dc.考点三、一元一次不等式(组)1一元一次不等式的概念只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式其标准形式:ax+b0(a0)或ax+b0(a0) ,ax+b0(a0)或
4、ax+b0(a0)2一元一次不等式的解法 一元一次不等式的解法与一元一次方程的解法类似,但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向 解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1 要点诠释:解一元一次不等式和解一元一次方程类似不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方3一元一次不等式组及其解集 含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组 一元一次不等式组中,几个不等式解集的公共部分叫做这个一元一次不等式组的解集一元
5、一次不等式组的解集通常利用数轴来确定要点诠释:判断一个不等式组是一元一次不等式组需满足两个条件:组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多 4一元一次不等式组的解法 由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表不等式组(其中ab)图示解集 口诀 (同大取大) (同小取小) (大小取中间)无解 (空集) (大大、小小找不到) 注:不等式有等号的在数轴上用实心圆点表示.要点诠释:解不等式组时,一般先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公共部分,就得到不等式组的解
6、集5一元一次不等式(组)的应用 列一元一次不等式(组)解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式(组)解应用题,寻求的是不等关系,因此,根据问题情境,抓住应用问题中“不等”关系的关键词语,或从题意中体会、感悟出不等关系显得十分重要要点诠释:列一元一次不等式组解决实际问题是中考考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)的解集中求出符合题意的答案6
7、一元一次不等式、一元一次方程和一次函数的关系一次函数,当函数值时,一次函数转化为一元一次方程;当函数值或时,一次函数转化为一元一次不等式,利用函数图象可以确定的取值范围.2 分式与分式方程考点一、分式的有关概念及性质1分式设A、B表示两个整式如果B中含有字母,式子就叫做分式注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3最简分式分子与分母没有公因式的分式叫做最简分式如果分子分母有公因式,要进行约分化简.要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和
8、B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断(4)分式有无意义的条件:在分式中, 当B0时,分式有意义;当分式有意义时,B0 当B=0时,分式无意义;当分式无意义时,B=0 当B0且A = 0时,分式的值为零考点二、分式的运算1基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 = 同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算 两个分式相乘,把分子相乘的积作为积的分
9、子,把分母相乘的积作为积的分母.(3)除法运算 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算 (分式乘方)分式的乘方,把分子分母分别乘方2零指数 .3负整数指数 4分式的混合运算顺序 先算乘方,再算乘除,最后加减,有括号先算括号里面的5约分 把一个分式的分子和分母的公因式约去,这种变形称为分式的约分6通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分要点诠释: 约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提
10、取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积通分注意事项:(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积 (2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉 (3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.考点三、分式方程及其应用1分式方程的概念分母中含有未知数的方程叫做分式方程2分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程 3分式方程的增根问题验根
11、:因为解分式方程可能出现增根,所以解分式方程必须验根验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解4分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性要点诠释: 解分式方程注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果
12、为0,即为增根,不为0,就是原方程的解列分式方程解应用题的基本步骤:(1)审仔细审题,找出等量关系;(2)设合理设未知数;(3)列根据等量关系列出方程;(4)解解出方程;(5)验检验增根;(6)答答题考点四、二次根式的主要性质1.;2.;3.;4. 积的算术平方根的性质:;5. 商的算术平方根的性质:.6.若,则.要点诠释: 与的异同点:(1)不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数但与都是非负数,即,因而它的运算的结果是有差别的,而(2)相同点:当被开方数都是非负数,即时,=;时,无意义,而.考点
13、五、二次根式的运算1二次根式的乘除运算(1)运算结果应满足以下两个要求:应为最简二次根式或有理式;分母中不含根号.(2)注意知道每一步运算的算理;2二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3二次根式的混合运算(1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;(2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.要点诠释:怎样快速准确地进行二次根式的混合运算.1.明确运算顺序,先算乘方,再算乘除,最后算加减,
14、有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.(1)加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简.例如,没有必要先对进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,通过约分达到化简目的;(2)多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用.如:,利用了
15、平方差公式.所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化.3 一元一次方程考点一、一元一次方程1.等式性质(1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式.2.方程的概念(1)含有未知数的等式叫做方程.(2)使方程两边相等的未知数的值,叫做方程的解(一元方程的解也叫做根).(3)求方程的解的过程,叫做解方程.3.一元一次方程(1)只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程.(2)一元一次方程的一般形式:.(3)解一元一次方程的一般步骤:去分母;去括号;移项;合并同类项;系
16、数化成1;检验(检验步骤可以不写出来).要点诠释: 解一元一次方程的一般步骤步骤名 称方 法依 据注 意 事 项1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)等式性质21、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来.2去括号去括号法则(可先分配再去括号)乘法分配律注意正确的去掉括号前带负数的括号3移项把未知项移到方程的一边(左边),常数项移到另一边(右边)等式性质1移项一定要改变符号4合并 同类项分别将未知项的系数相加、常数项相加1、整式的加减;2、有理数的加法法则单独的一个未知数的系数为“1”5系数
17、化为“1”在方程两边同时除以未知数的系数(或方程两边同时乘以未知数系数的倒数)等式性质2不要颠倒了被除数和除数(未知数的系数作除数分母)*6检根x=a方法:把x=a分别代入原方程的两边,分别计算出结果. 若 左边右边,则x=a是方程的解;若 左边右边,则x=a不是方程的解.注:当题目要求时,此步骤必须表达出来.说明:(1)上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说,解每一个方程都必须经过六个步骤;(2)解方程时,一定要先认真观察方程的形式,再选择步骤和方法;(3)对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解.考点二、二元一次方程组
18、1. 二元一次方程组的定义两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组.要点诠释:判断一个方程组是不是二元一次方程组应从方程组的整体上看,若一个方程组内含有两个未知数,并且未知数的次数都是1次,这样的方程组都叫做二元一次方程组2.二元一次方程组的一般形式要点诠释: a1、a2不同时为0,b1、b2不同时为0,a1、b1不同时为0,a2、b2不同时为0.3. 二元一次方程组的解法(1) 代入消元法;(2) 加减消元法.要点诠释: (1)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力
19、给予渗透(2)一元一次方程与一次函数、一元一次不等式之间的关系: 当二元一次方程中的一个未知数的取值确定范围时,可利用一元一次不等式组确定另一个未知数的取值范围,由于任何二元一次方程都可以转化为一次函数的形式,所以解二元一次方程可以转化为:当y0时,求x的值.从图象上看,这相当于已知纵坐标,确定横坐标的值.考点三、一次方程(组)的应用列方程(组)解应用题的一般步骤: 1.审:分析题意,找出已知、未知之间的数量关系和相等关系;2.设:选择恰当的未知数(直接或间接设元),注意单位的统一和语言完整;3.列:根据数量和相等关系,正确列出代数式和方程(组);4.解:解所列的方程(组);5.验: (有三次
20、检验 是否是所列方程(组)的解;是否使代数式有意义;是否满足实际意义);6.答:注意单位和语言完整.要点诠释: 列方程应注意:(1)方程两边表示同类量;(2)方程两边单位一定要统一;(3)方程两边的数值相等.【经典例题】1解不等式x-5,并把它的解集在数轴上表示出来【思路点拨】分数线兼有括号的作用,分母去掉后应将分子添上括号同时,用分母去乘不等式各项时,不要漏乘不含分母的项;不等式两边都乘以(或除以)同一个负数时,不等号的方向必须改变;在数轴上表示不等式的解集,当解集是xa或xa时,不包括数轴上a这一点,则这一点用圆圈表示;当解集是xa或xa时,包括数轴上a这一点,则这一点用实心圆点表示.【答
21、案与解析】解:去分母,得 4(2x-1)-2(10x+1)15x-60, 去括号,得 8x-4-20x-215x-60,移项合并同类项,得-27x-54,系数化为1,得x2在数轴上表示解集如下图所示:【总结升华】解不等式(组)是中考中易考查的考点,必须熟练掌握2解不等式组并将其解集在数轴上表示出来.【思路点拨】分别解出两个不等式的解集,再求出公共的解集即可.【答案与解析】解:由(1)式得5, 由(2)式得-1, -15 数轴上表示如图: 【总结升华】注意解不等式组的解题步骤.3计算【答案与解析】4如果方程 有增根, 那么增根是 .【答案与解析】 因为增根是使分式的分母为零的根,由分母或可得.所
22、以增根是.答案: 【点评】使分母为0的根是增根.5某县为鼓励失地农民自主创业,在2012年对60位自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?【思路点拨】根据失地农民自主创业连续经营一年以上的给予1000元奖励:自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励列方程求解【答案与解析】方法一: 设失地农民中自主创业连续经营一
23、年以上的有x人,则根据题意列出方程 1000x+(60x)(1000+2000)=100000, 解得:x=40, 60-x =60-40=20 答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人. 方法二: 设失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民有分别有x,y人,根据题意列出方程组: 解得: 答:失地农民中自主创业连续经营一年以上的有40,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人. 6在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?【思路点拨】根据甲、乙、丙三位
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省烟台龙口市2025届初三下学期第三次阶段检测试题数学试题含解析
- 企业职场礼仪培训
- 枣强中学高一上学期第四次月考地理试题
- 2025合同法中合同解除的若干问题
- 急腹症的观察及急救护理
- 2025建筑项目招标投标合同(合同协议书)
- 培训班停课通知与违规办学治理
- 2025委托加工合同范本下载
- 2025深交所指定交易合同
- 2025商品买卖合同
- GB/T 23863-2024博物馆照明设计规范
- 新《斜视弱视学》期末考试复习题库(含答案)
- 四川省会计师事务所服务收费标准
- 幼儿园中班科学活动《各种各样的鸟》课件
- 化学品泄露应急处置培训
- 中国矿产资源集团招聘笔试题库2024
- 高速公路机电工程实施性施工组织设计计划作业指导书
- 部编版二年级下册语文课文必背内容(课文、古诗、日积月累)
- 深海采矿技术及环境影响
- 小儿推拿知识完整版课件
- 山东省枣庄市滕州市2023-2024学年八年级下学期期末数学试题
评论
0/150
提交评论