版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、吉林省长春市第二十九中学2020-2021学年高二数学下学期第一学程考试试题 文吉林省长春市第二十九中学2020-2021学年高二数学下学期第一学程考试试题 文年级:姓名:- 9 -吉林省长春市第二十九中学2020-2021学年高二数学下学期第一学程考试试题 文答题时间:90分钟 满分:150分 一、选择题(每题5分,共60分)1.已知,则( )a.b.c.d.2.在极坐标系中,极点为坐标原点,极轴为x轴正半轴,建立直角坐标系,点的直角坐标是( )a.b.c.d.3.曲线在点处的切线方程为( )a. b. c. d. 4.椭圆的焦距是( )a.2b.c.d.5、 把参数方程 ( 为参数)化成普
2、通方程是( )a. b. c. d.6.函数的单调递增区间是( )abcd7.在极坐标系中,圆的圆心的极坐标系是( )abcd8.若双曲线的一条渐近线为,则实数( )abc2d49.参数方程(为参数)化成普通方程是( )a b cd10.已知抛物线的焦点与椭圆的一个焦点重合,则( )a.b.c.d.11.已知函数 (,)在处取得极小值,则的最小值为( )a.4b.5c.9d.1012.已知函数,则( )abcd1二、填空题(每题5分,共20分)13.过点,且与椭圆有相同焦点的椭圆的标准方程为_.14.设曲线在点处的切线与曲线在点p处的切线垂直,则p的坐标为_.15.在极坐标系中,直线与圆交于两
3、点,则_16.函数有零点,则实数m的取值范闱是_.三、解答题17.(13分,第一问6分,第二问7分)已知椭圆焦点为且过点,椭圆上一点p到两焦点的距离之差为2.(1)求椭圆的标准方程;(2)求的面积.18.(13分,第一问6分,第二问7分)已知函数在处取得极值.1.求实数a的值;2.当时,求函数的最小值.19. (13分,第一问6分,第二问7分)在平面直角坐标系中,已知曲线的参数方程为(t为参数),曲线的直角坐标方程为.以平面直角坐标系的原点o为极点,x轴的正半轴为极轴建立极坐标系,射线l的极坐标方程为,.(1)求曲线的极坐标方程;(2)设分别为射线l与曲线除原点之外的交点,求的最大值.20.(
4、13分.第一问4分,第二问4分,第三问5分)已知函数(1)求曲线在点处的切线方程;(2)求的单调区间;(3)若对于任意,都有,求实数a的取值范围.21. (13分.第一问4分,第二问4分,第三问5分)在平面直角坐标系中,已知曲线(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程,点在直线上,直线与曲线交于两点.(1)求曲线的普通方程及直线的参数方程;(2)求的面积.22.(5分)已知曲线的参数方程是(为参数),以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程是.若点的极坐标分别为和,直线与曲线相交于两点,射线与曲线相交于点,射线与曲线相交于点,则的值为_
5、 高二数学文科试题参考答案一、选择题题号123456789101112答案bccaddbdacca6、 填空题b. 14. 15. 2 16.17、答案:(1), 椭圆方程为.(2),为直角三角形,18. 答案:1.,函数在处取得极值,所以有;2.由1可知:,当时,函数单调递增,当时,函数单调递减,故函数在处取得极大值,因此,故函数的最小值为.19. 答案:(1)由曲线的参数方程(t为参数),消去参数t得,即,曲线的极坐标方程为.由曲线的直角坐标方程,得,曲线的极坐标方程为.(2)联立,得,得,联立,得,得,时,有最大值,最大值为2.20. 答案:(1)因为函数,所以.又因为,所以曲线在点处的切线方程为.(2)函数定义域为,由(1)可知, 令解得.与在区间上的情况如下:+极小值所以, 的单调递增区间是;的单调递减区间是.(3)当时,“”等价于“”.令,.当时, ,所以在区间单调递减.当时, ,所以在区间单调递增.而,.所以在区间上的最大值为.所以当时,对于任意,都有.21、答案:(1)将曲线消去参数得, 曲线的普通方程为:.因为点在直线上,. ,展开得, 又,所以直线的直角坐标方程为, 显然过点, 倾斜角为.所以直线的参数方程为 (为参数).
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022年江苏省公务员录用考试《行测》真题(B类)及答案解析
- 吉林师范大学《土壤地理学》2021-2022学年第一学期期末试卷
- 吉林师范大学《教学系统化设计》2021-2022学年第一学期期末试卷
- 双捷中学校园安全信访维稳工作预案
- 幼儿园紧急事件处理制度
- 校园文化活动期间餐饮配送方案
- 食品安全双重预防体系制度探讨
- 吉林大学《肿瘤康复学》2021-2022学年第一学期期末试卷
- 乐山公墓市场调研方案
- 智能办公家具采购实施方案
- 航空航天类专业大学生职业生涯规划书
- 不良资产项目律师法律尽调报告(模板)
- 接交车辆检查表-原版
- 剪辑师职业生涯规划与管理
- 水稻栽培技术-水稻常规栽培技术
- 四风整改台账清单
- 标准报价单模板(二)
- 【期中】第1-4单元易错题专项攻略-数学四年级上册苏教版(含答案)
- 《mc入门教程》课件
- 福建省厦门市第一中学2023-2024学年七年级上学期期中数学试卷
- 医院病房超市经营管理服务方案
评论
0/150
提交评论