高中数学必修二知识概括_第1页
高中数学必修二知识概括_第2页
高中数学必修二知识概括_第3页
高中数学必修二知识概括_第4页
高中数学必修二知识概括_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高中数学必修二第一章 立体几何初步一、基础知识(理解去记)(一)空间几何体的结构特征(1)多面体由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。 旋转体把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。(2)柱,锥,台,球的结构特征 1.棱柱 1.1棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: 四棱柱 底面为平行四边形 平行六面体 侧棱

2、垂直于底面 直平行六面体 底面为矩形 长方体 底面为正方形 正四棱柱 侧棱与底面边长相等 正方体1.3棱柱的性质:侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等,侧面与对角面是矩形。1.4侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.5面积、体积公式:(其中c为底面周长,h为棱柱的高)注意:大多数省市在高考试卷会给出面积体积公式,因此考生可以不用刻意地去记2.圆柱2.1圆柱以矩形的一边所在的直线为旋转轴,其余各 边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的

3、性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.2.4面积、体积公式:s圆柱侧=;s圆柱全=,v圆柱=s底h=(其中r为底面半径,h为圆柱高)3.棱锥3.1棱锥有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 正棱锥如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。3.2棱锥的性质:平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;正棱锥各侧棱相等,各侧面是全等的等腰三角形;正棱锥中六个

4、元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。)(如上图:为直角三角形)3.3侧面展开图:正n棱锥的侧面展开图是有n个全等的等腰三角形组成的。3.4面积、体积公式:s正棱锥侧=,s正棱锥全=,v棱锥=.(其中c为底面周长,侧面斜高,h棱锥的高)4.圆锥4.1圆锥以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。4.2圆锥的性质:平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;轴截面是等腰三角形;如右图:如右图:.4.3圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心

5、,以母线长为半径的扇形。4.4面积、体积公式:s圆锥侧=,s圆锥全=,v圆锥=(其中r为底面半径,h为圆锥的高,l为母线长)5.棱台5.1棱台用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.5.2正棱台的性质:各侧棱相等,各侧面都是全等的等腰梯形;正棱台的两个底面以及平行于底面的截面是正多边形; 如右图:四边形都是直角梯形棱台经常补成棱锥研究.如右图:,注意考虑相似比.5.3棱台的表面积、体积公式:侧,(其中是上,下底面面积,h为棱台的高)6.圆台6.1圆台用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 6.2圆台的性质:圆台的上下底面,与底面平行的截面都是

6、圆;圆台的轴截面是等腰梯形;圆台经常补成圆锥来研究。如右图:,注意相似比的应用.6.3圆台的侧面展开图是一个扇环;6.4圆台的表面积、体积公式:,v圆台,(其中r,r为上下底面半径,h为高)7.球7.1球以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.或空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体叫做球体,简称球;7.2球的性质:球心与截面圆心的连线垂直于截面;(其中,球心到截面的距离为d、球的半径为r、截面的半径为r)7.3球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.注:球的有关问题转化为圆的问题解决.7.4球面积、体积

7、公式:(其中r为球的半径)(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。2.三视图是观察者从三个不同位置观察同一个空间几何体而画出的图形;正视图;侧视图;俯视图;注:(1)俯视图画在正视图的下方,“长度”与正视图相等;侧视图画在正视图的右边,“高度”与正视图相等,“宽度”与俯视图。(简记为“正、侧一样高,正、俯一样长,俯、侧一样宽”. (2)正视图,侧视图,俯视图都是平面图形,而不是直观图。3.直观图: 3.1直观图是观察着站在某一点观察一个空间几何体而画出的图形。直观图通常是在平行投影下画出的空间图形。 3.2斜二测法:step1:在已知图形中

8、取互相垂直的轴ox、oy,(即取 );step2:画直观图时,把它画成对应的轴,取,它们确定的平面表示水平平面;step3:在坐标系中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的倍.解决两种常见的题型时应注意:(1)由几何体的三视图画直观图时,一般先考虑“俯视图”.(2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。二 点、直线、平面之间的位置关系(一) 平面的基本性质1.平面无限延展,无边界1.1三个

9、定理与三个推论(二)空间图形的位置关系1.空间直线的位置关系:平行线的传递公理:平行于同一条直线的两条直线互相平行。符号表述:等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。异面直线:(1)定义:不同在任何一个平面内的两条直线异面直线; (2)判定定理:连平面内的一点与平面外一点的直线与这个平面内不过此点的直线是异面直线。异面直线所成的角:(1)范围:;(2)作异面直线所成的角:平移法.如右图,在空间任取一点o,过o作,则所成的角为异面直线所成的角。特别地,找异面直线所成的角时,经常把一条异面直线平移到另一条异面直线的特殊点(如线段中点,端点等)上,形成异面直线所成

10、的角.2.直线与平面的位置关系: 3.平面与平面的位置关系:(三)平行关系(包括线面平行,面面平行)1.线面平行:2.线面斜交:面面平行的性质:(1)(面面平行线面平行);(2);(面面平行线线平行)(3)夹在两个平行平面间的平行线段相等。(四)垂直关系(包括线面垂直,面面垂直)1.线面垂直3.2面面斜交二面角:(1)定义:【如图】范围:作二面角的平面角的方法:(1)定义法;(2)三垂线法(常用);(3)垂面法.3.3面面垂直二、基础题型(必懂)1、概念辨析题:(1)此题型一般出现在填空题,选择题中,解题方法可采用排除法,筛选法等。(2)对于判断线线关系,线面关系,面面关系等方面的问题,必须在

11、熟练掌握有关的定理和性质的前提下,利用长方体,正方体,实物等为模型来进行判断。你认为正确的命题需要证明它,你认为错误的命题必须找出反例。(3)相关例题:课本和辅导书上出现很多这样的题型,举例说明如下:例:(09年北京卷)设m,n是两条不同的直线,是三个不同的平面,给出下列四个说法:; ,说法正确的序号是:_2、证明题。证明平行关系,垂直关系等方面的问题。三、趋近高考(必懂)1.(2010全国卷2理)已知正四棱锥中,那么当该棱锥的体积最大时,它的高为(a)1 (b) (c)2 (d)3【答案】c【解析】设底面边长为a,则高所以体积,设,则,当y取最值时,解得a=0或a=4时,体积最大,此时,故选

12、c.2.(2010陕西文)若某空间几何体的三视图如图所示,则该几何体的体积是b(a)2(b)1(c)(d)【答案】 b【解析】 如图,该立体图形为直三棱柱,所以其体积为3.(2010辽宁文)已知是球表面上的点,则球的表面积等于(a)4 (b)3 (c)2 (d)【答案】a【解析】选a.由已知,球的直径为,表面积为4.(2010安徽文)一个几何体的三视图如图,该几何体的表面积是(a)372 (b)360 (c)292 (d)280【答案】b【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。.【方法技巧】把三视图转化为直观图是解决问题的关键.又三视图

13、很容易知道是两个长方体的组合体,画出直观图,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和。5.(2010重庆文)到两互相垂直的异面直线的距离相等的点(a)只有1个 (b)恰有3个(c)恰有4个 (d)有无穷多个【答案】 d【解析】放在正方体中研究,显然,线段、ef、fg、gh、he的中点到两垂直异面直线ab、cd的距离都相等, 所以排除a、b、c,选d亦可在四条侧棱上找到四个点到两垂直异面直线ab、cd的距离相等6.(2010浙江文)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(a)cm3 (b)cm3(c)cm3 (d)cm3【答案】

14、b【解析】选b,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题7.(2010福建文)若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )a b2 c d6【答案】d【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为,侧面积为,选d8.(2010全国卷1文)已知在半径为2的球面上有a、b、c、d四点,若ab=cd=2,则四面体abcd的体积的最大值为(a) (b) (c) (d) 【答案】b【解析】过cd作平面pcd,使ab平面pcd,交ab与p,设点p到cd的距离为,则有,当直径通过ab与cd的中点时,故第二章 平面解析几

15、何初步一、基础知识(理解去记)1直线的倾斜角和斜率:直线向上的方向与x轴正方向所成的小于1800的正角,叫做它的倾斜角。规定平行于x轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。根据直线上一点及斜率可求直线方程。2直线方程的几种形式:【必会】【必考】(1)一般式:ax+by+c=0;(2)点斜式:y-y0=k(x-x0);(3)斜截式:y=kx+b;(4)截距式:;(5)两点式:;3平行与垂直:若直线l1与l2的斜率分别为k1, k2。且两者不重合,则l1/l2的充要条件是k1=k2;l1l2的充要条件是k1k2=-1。4两点p1(x1, y1)与p2(x2, y2)

16、间的距离公式:|p1p2|=。5点p(x0, y0)到直线l: ax+by+c=0的距离公式:。6.两平行直线l1:a1x+b1y+c1=0与l2:a2x+b2y+c2=0之间的距离 解法1:找出直线l1中的任意一点,该点到直线l2的距离即为两直线间的距离;ab 解法2:把直线l2:a2x+b2y+c2=0形式转化为a1x+b1y+c=0 ,则2200|c1cd+-=7直线系的方程:若已知两直线的方程是l1:a1x+b1y+c1=0与l2:a2x+b2y+c2=0,则过l1, l2交点的直线方程为a1x+b1y+c1+(a2x+b2y+c2=0;由l1与l2组成的二次曲线方程为(a1x+b1y+c1)(a2x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论