



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数列求和的基本方法与技巧一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、 等差数列求和公式:2、等比数列求和公式:例1、已知,求的前n项和.解:由由等比数列求和公式得(利用常用公式)1练习:求的和。解:由等差数列的求和公式得二、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列anbn的前n项和,其中an、bn分别是等差数列和等比数列.例2求和:解:由题可知,的通项是等差数列2n1的通项与等比数列的通项之积设.(设制错位)得(错位相减)再利用等比数列的求和公式得:练习:求数列前n项的和.解:由题可知,的通项是等差数列2n
2、的通项与等比数列的通项之积设(设制错位)得(错位相减)三、反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个.例3求的值解:设.将式右边反序得.(反序)又因为+得(反序相加)89s44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例4、求和:解:原式=练习:求数列的前n项和:,解:设将其每一项拆开再重新组合得(分组)当a1时,(分组求和)当时,练习:求数列的前n项和。解:五、裂项法求和这是分解与组合思想在数列求和中的具
3、体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:例5求数列的前n项和.解:设(裂项)则(裂项求和)练习:求13,115,135,163之和。解:六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求sn.例6、数列an:,求s2002.解:设s2002由可得(找特殊性质项)s2002(合并求和)5练习:在各项均为正数的等比数列中,若的值.解:设由等比数列的性质(找特殊性质项)和对数的运算性质得(合并求和)10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.例7、求5,55,555,的前n项和。解:an=59(10n-1)sn=59(10-1)+59(102-1)+59(103-1)+59(10n-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加班夜宵采购合同范本
- 单位间借用合同范本
- 个人股东入股合同范本
- 保安公司加盟合同范本
- 产学研技术采购合同范本
- 劳务聘用员工合同范本
- 企业绿化采购合同范本
- 加工中心租赁合同范本
- 劳务协议解除合同范本
- 公司股权集资合同范本
- 第8课《山山水水》教学设计(新人教版小学美术六年级上册)
- word 公章 模板
- 泛读2unit2-music
- 世界技能大赛PPT幻灯片课件(PPT 21页)
- 中学生防溺水安全教育课件(PPT 44页)
- Python程序设计ppt课件完整版
- T∕ZSQX 008-2020 建设工程全过程质量行为导则
- 2019版外研社高中英语选择性必修二Unit 1 Growing up 单词表
- 《腹膜透析》ppt课件
- 安徽省2020-2021学年七年级语文下学期期末测试卷[含答案]
- CFA考试一级章节练习题精选0329-7(附详解)
评论
0/150
提交评论