版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学(八年级上册)知识点总结第一章 实数一、实数的概念及分类 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数 正无理数 无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率,或化简后含有的数,如+8等;(3)有特定结构的数,如0.1010010001等;(4)某些三角函数值,如sin60o等二、平方根、算数平方根和立方根 1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0
2、的算术平方根是0。表示方法:记作“”,读作根号a。性质:正数和零的算术平方根都只有一个,零的算术平方根是零。2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。表示方法:正数a的平方根记做“”,读作“正、负根号a”。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数a的平方根的运算,叫做开平方。 注意:的双重非负性: 03、立方根一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根(或三次方根)。表示方法:记作性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零
3、。注意:,这说明三次根号内的负号可以移到根号外面。 三、二次根式计算1、含有二次根号“”;被开方数a必须是非负数。2、性质:(1) (2) (3) ()(4) ()3、化简二次根式:把二次根式被开方数的完全平方因式移到根号外。例:。(字母因式由根号内移到根号外时,必须考虑字母因式隐含的符号)4、最简二次根式:化简后的二次根式需同时符合以下两个条件:被开方数中各因式的指数都为1;被开方数不含分母。这样的二次根式叫做最简二次根式。将一个二次根式化成最简二次根式,有以下两种情况:如果被开方数是分式或分数(包括小数),先利用商的自述平方根的性质把它写成分式的形式,然后再分母有理化;如果被开方数是整式或
4、整数,先将它分解因式或分解质因数,然后把能开方的因式或因数开出来,从而将式子化简。化二次根式为最简二次根式的步骤:把被开方数分解质因数,化为积的形式;把根号内能开方的的因数移到根号外;化去根号内的分母,若被开方数的因数中有带分数要化成假分数,小数化成分数。5、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式。例:、。(判断是不是同类二次根式:首先,要看它们是不是最简二次根式;其次,看这些最简二次根式的被开方数是否相同)6、二次根式的加法、减法:化简,化成最简二次根式;合并同类二次根(即将被开方数相同的二次根式的系数进行合并)7、二次根式的乘法、除
5、法:先完成根号内乘除,再化简二次根式;小数化分数,带分数化假分数;字母需考虑取值范围(不要忽视隐含条件)。8、分母有理化:把分子和分母都乘以一个适当的代数式,使分母不含根号,这种计算叫做分母有理化。第二章 一元二次方程1、 定义:只含有一个未知数,且未知数最高次数是二次的整式方程。2、 一般式:3、 一元二次方程的解法:1、 开平方法:一般来说,形如、的一元二次方程可以用开平方法。(三种情况:有两个不相等的实数根,等于0,没有实数根)2、 因式分解法:提取公因式、公式法(平方差、完全平方公式)、十字相乘法、分组分解法。3、 配方法:移常数项;化二次项系数为1;配方,在方程的左右两边同时加上一次
6、项系数一半的平方;用开平方法求解;结论。4、 公式法:先把方程化为一般形式;写出方程各项的系数a、b、c的值(要注意它们的符号);计算;当时,将a、b、c的值代入求根公式,求出方程的两个根;当0b0 y 0 x图像经过一、二、三象限,y随x的增大而增大。b0 y 0 x图像经过一、三、四象限,y随x的增大而增大。k0 y 0 x 图像经过一、二、四象限,y随x的增大而减小b0时,图像经过第一、三象限,y随x的增大而增大;(2)当k0时,y随x的增大而增大(2)当k0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一
7、个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。 待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。 (1) 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0。 (2) 求ax+b=0(a, b是常数,a0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标。 (3) 一次函数与一元一次不等式: 解不等式ax+b0(a,b是常数,a0) 。从“数”的角度看,x为何值时函数y= ax+b的值大于0。 (4)解不等式ax+b0(a,b是常数,a0)。 从“形”的角度看,
8、求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围。7、一次函数与一元一次方程的关系: 任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k0)的形式 而一次函数解析式形式正是y=kx+b(k、b为常数,k0)当函数值为0时,即kx+b=0就与一元一次方程完全相同 结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k0)的形式所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值7、 反比例函数定义:一般地,形如(为常数,)的函数称为反比例函数。还可以写成反比例函数解
9、析式的特征:等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1.比例系数自变量的取值为一切非零实数。函数的取值是一切非零实数。反比例函数的图像图像的画法:描点法 列表(应以o为中心,沿o的两边分别取三对或以上互为相反的数) 描点(有小到大的顺序) 连线(从左到右光滑的曲线)反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。反比例函数的图像是是轴对称图形(对称轴是或)。反比例函数()中比例系数的几何意义是:过双曲线 ()上任意引轴轴的垂线,所得矩形面积
10、为。反比例函数性质如下表:的取值图像所在象限函数的增减性一、三象限在每个象限内,值随的增大而减小二、四象限在每个象限内,值随的增大而增大反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。第四章 几何证明一、几何证明中常用的证明方法: 1、证明两直线平行利用平行线的性质和判定,利用平行线的判断定理及其推论来证明,这是证明两直线平行最基本的方法,关键是找出同位角、内错角的相等关系或同旁内角的互补关系。 2、证明两线段相等利用三角形全等的性质和判定、利用等腰
11、三角形的性质和判定 (1)如果两线段分别在两个三角形中,那么可证这两个三角形全等,有时可能缺少直接条件,要证明两次全等; (2)有时两线段分别在两个三角形中,但这两个三角形不全等,那么可添辅助线构造全等三角形来证。常添的辅助线有:平行线、垂线、中线、连结线段等。 (3)如果两线段是一个三角形的两边,可证它们所对的角相等、等角对等边; (4)证明两条线段都等于第三条线段,即以第三条线段为媒介。 3、证明两角相等利用三角形全等的性质和判定、利用等腰三角形的性质和判定。 4、证明两直线互相垂直利用垂直的定义、利用等腰三角形三线合一的性质。 *5、证一线段等于另一线段的2倍或一半利用加倍法或拆分法常常
12、要作辅助线。 添辅助线:由于证明的需要,可以在原来的图上添画一些线,即添加辅助线来完成一些几何证明,辅助线通常画成虚线。 三角形证明题中常见在辅助线做法:利用三角形的主要线段构造全等三角形 。二、全等三角形 1、定义:能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“sss”)边角边:两边和它们的夹角对应相等两个三角形
13、全等(可简写成“sas”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“asa”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“aas”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“hl”)4、证明两个三角形全等的基本思路:三、勾股定理1、勾股定理的定义直角三角形两直角边a,b的平方和等于斜边c的平方,即2、勾股定理的逆定理如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。3、勾股数:满足的三个正整数,称为勾股数。 几何主要定义: (1)角 角平分线的性质:角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角平
14、分线上。 (2)相交线与平行线 同角或等角的补角相等,同角或等角的余角相等; 对顶角的性质:对顶角相等 垂线的性质: 过一点有且只有一条直线与已知直线垂直; 直线外一点有与直线上各点连结的所有线段中,垂线段最短; 线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线; 线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线;平行线的定义:在同一平面内不相交的两条直线叫做平行线; 平行线的判定: 同位角相等,两直线平行; 内错角相等,两直线平行; 同旁内角互补,两直线平行; 平行线的特征: 两直线平行,同位角相等; 两直
15、线平行,内错角相等; 两直线平行,同旁内角互补; 平行公理:经过直线外一点有且只有一条直线平行于已知直线。 (3)三角形 三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边; 三角形的内角和定理:三角形的三个内角的和等于; 三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和; 三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角; 角形的三条角平分线交于一点(内心); 三角形的三边的垂直平分线交于一点(外心); 三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半; 全等三角形的判定: 边角边公理(sas) 角边角公理(as
16、a) 角角边定理(aas) 边边边公理(sss) 斜边、直角边公理(hl) 等腰三角形的性质: 等腰三角形的两个底角相等; 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一) 等腰三角形的判定: 有两个角相等的三角形是等腰三角形; 直角三角形的性质: 直角三角形的两个锐角互为余角; 直角三角形斜边上的中线等于斜边的一半; 直角三角形的两直角边的平方和等于斜边的平方(勾股定理); 直角三角形中角所对的直角边等于斜边的一半; 直角三角形的判定: 有两个角互余的三角形是直角三角形; 如果三角形的三边长a、b 、c有下面关系,那么这个三角形是直角三角形(勾股定理的逆定理)。公式:1、 长方形的周长=(长+宽)2c=(a+b)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 垃圾分类的讲座
- 2024新媒体运营培训
- 教育培训项目推广方案
- 公司项目部管理人员安全培训试题(考试直接用)
- 日常安全培训试题答案综合题
- 厂里安全培训试题及参考答案(培优A卷)
- 新入职工入职安全培训试题附答案(B卷)
- 网络安全事件信息传输制度
- 江苏省常州市2024-2025学年高三上学期期中质量调研英语试卷(无答案)
- 幼儿园教师半日活动
- 如何的提高病区护理满意度-课件
- 正常心脏听诊检查说课稿-课件
- 喜茶运营管理手册和员工操作管理手册
- 五年级家长会数学老师发言稿
- 工期及费用索赔与反索赔操作指引
- 2023-2023年天津市和平区九年级上学期期中考试数学试卷
- 2022星巴克大学咖啡大师认证答案
- 水利工程分部工程单位工程质量结论核备报审表优质资料
- 立冬传统节气介绍PPT模板
- 铝两片罐工艺流程
- 《了凡四训》原文及译文-拼音版
评论
0/150
提交评论