钢结构焊接、螺栓连接计算及实例讲解_第1页
钢结构焊接、螺栓连接计算及实例讲解_第2页
钢结构焊接、螺栓连接计算及实例讲解_第3页
钢结构焊接、螺栓连接计算及实例讲解_第4页
钢结构焊接、螺栓连接计算及实例讲解_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一节钢结构的连接方法钢结构是由钢板、型钢通过必要的连接组成基本构件,如梁、柱、桁架等;再通过一 定的安装连结装配成空间整体结构,如屋盖、厂房、钢闸门、钢桥等。可见,连接的构造 和计算是钢结构设计的重要组成部分。好的连接应当符合安全可靠、节约钢材、构造简单 和施工方便等原则。钢结构的连接方法可分为焊缝连接、铆钉连接和螺栓连接三种(详见附图十三)。一、焊缝连接焊接是现代钢结构最主要的连接方法。其优点是不削弱构件截面(不必钻孔),构造简单,节约钢材,加工方便,在一定条件下还可以采用自动化操作,生产效率高。此外, 焊缝连接的刚度较大密封性能好。焊缝连接的缺点是焊缝附近钢材因焊接的高温作用而形成热影响

2、区,热影响区由高温降到常温冷却速度快,会使钢材脆性加大,同时由于热影响区的不均匀收缩,易使焊件产 生焊接残余应力及残余变形,甚至可能造成裂纹,导致脆性破坏。焊接结构低温冷脆问题 也比较突出。二、铆钉连接铆接的优点是塑性和韧性较好,传力可靠,质量易于检查和保证,可用于承受动载的 重型结构。但是,由于铆接工艺复杂、用钢量多,因此,费钢又费工。现已很少采用。三、螺栓连接螺栓连接分为普通螺栓连接和高强度螺栓连接两种。普通螺栓通常用Q235钢制成,而高强度螺栓则用高强度钢材制成并经热处理。高强度螺栓因其连接紧密,耐疲劳,承受动 载可靠,成本也不太高,目前在一些重要的永久性结构的安装连接中,已成为代替铆接

3、的 优良连接方法。螺栓连接的优点是安装方便,特别适用于工地安装连接,也便于拆卸,适用于需要装 拆结构和临时性连接。其缺点是需要在板件上开孔和拼装时对孔,增加制造工作量;螺栓 孔还使构件截面削弱,且被连接的板件需要相互搭接或另加拼接板或角钢等连接件,因而 比焊接连接多费钢材。第二节焊接方法、焊缝类型和质量级别一、钢结构中常用的焊接方法焊接方法很多,钢结构中主要采用电弧焊,薄钢板(t乞3mm)的连接有时也可以采用电阻焊或气焊。1电弧焊电弧焊是利用焊条或焊丝与焊件间产生的电弧热,将金属加热并熔化的焊接方法。其原理是采用低电压(一般为5070V)、大电流(几十到几百安)引燃电弧,使焊件与焊条或焊丝之间

4、产生很大热量和强烈的弧光, 利用电弧热来熔化焊件的边缘金属和焊条 (丝) 进行焊接。根据操作的自动化程度和焊接时用以保护熔化金属的物质种类,电弧焊可分为 手工电弧焊,自动和半自动埋弧焊及CO气体保护焊等。(1)手工电弧焊是钢结构制造中最常用的焊接方法,设备简单,操作灵活,适用性和 可达性强,对各种施焊位置和分散或曲折短焊缝均适用。缺点是生产效率比自动、半自动 焊低,质量稍低并且变异性大,施焊时电弧光较强 (详见附图十四 ) 。手工焊所采用的焊条,其表面都敷有一层11.5m m厚度的药皮。药皮的作用:稳定电弧;施焊时产生气体保护熔融金属与大气隔离,以防止空气中氧氮侵入而使焊缝变脆; 造成熔渣 (

5、清理焊缝时铲除 ) 覆盖于熔成焊缝表面,使与大气隔离,并使焊缝冷却缓慢以便 混入熔融金属中的气体和有害杂质溢出表面;另外,药皮中的合金成份还可以改善焊缝性 能。焊条选用应和焊件钢材的强度和性能相适应。在手工焊时,对Q235钢用E43型焊条(E4300 E4316) Q345 钢(16 Mn 钢)用 E50 型焊条(E5000 E5018) , Q390(15MnV)钢和 Q420 钢均用E55型焊条(E5500E5518)。其中E表示焊条;前两位数字表示焊缝熔敷金属或对 接焊缝的抗拉强度分别为420N/mm2, 490N/mm2, 540N/mm2, ( 折合 43kgf/m m 2 , 50

6、kgf/mm2,55kgf/mm2) ;第 3位数字表示适用的焊接位置,0和 1 表示适用于人与全位置施焊 (平、横、立、仰 ), 2表示适用于平焊及水平角焊, 4表示适用于向下立焊;第 3位和第 4位数字组 合表示药皮类型和适用的电流种类 (交、直流电源 )。第 3 位和第 4 位数字为 15、 16、 18 的焊条为低氢型焊条,其所得焊缝具有较好的塑性、韧性和抗裂性,故直接承受动力荷载 的重要结构以及处于低温条件下工作的结构,一般指定采用上述型号。而非低氢型焊条, 可用于其他结构。当不同强度的钢材连接时,可采用低强度钢材相适应的焊接材料。(2)焊剂层下自动或半自动埋弧焊 焊剂层下自动或半自

7、动埋弧焊是焊接过程机械化的一种主要方法。它所采用的是盘状连续的光焊丝在散粒状焊剂下燃弧焊接,散粒状焊剂 的作用与手工焊焊条的药皮相同。自动焊的引弧、焊丝送下、焊剂堆落和焊丝沿焊缝方向 的移动都是自动的。而半自动焊的焊接前进方式仍是依靠手持焊枪移动(详见附图十五 )。埋弧焊的优点是与大气隔离保护效果好,且无金属飞溅,弧光不外露;可采用较大电 流使熔深加大,相应可减小对接焊件间隙和坡口角度;节省焊丝和电能,劳动条件好,生 产效率高;焊缝质量稳定可靠,塑性和韧性比较好。其缺点是焊前装配要求严格,施焊位 置受限制,较适用于长直的水平俯焊缝或倾角不大的斜面焊缝,不如手工焊灵活。埋弧焊所采用的焊丝和焊剂应

8、与焊件钢材相匹配,焊丝一般采用专用的焊接用钢丝。对Q235钢,可采用H08A H08MnAH08E等焊丝,相应的焊剂分别为 HJ431、HJ430和SJ4O1。 对低合金高强度结构钢尚应根据坡口情况相应选用。对Q345 钢,不开坡口的对接焊缝,可用H08A焊丝,中厚板开坡口对接可用H08MnAH10Mn2和H10MnSi焊丝,焊剂可用HJ350。对Q390钢和Q420钢,不开坡口的对接焊缝用H08A H08MnA旱丝,中厚板开坡口对接时H08 MnMoA丝,再通过压力12mm焊点应主用H10Mn2 H10MnS;焊剂用HJ430或HJ431;而厚板深坡口对接时常用 焊剂为HJ350或HJ250

9、。2. 电阻焊 电阻焊是利用电流通过焊件接触点表面的电阻所产生的热量来熔化金属, 使其焊合。冷弯薄壁型钢的焊接,常用电阻点焊,板叠总厚度一般不超过 要承受剪力,其抗拉(撕裂)能力较差。二、焊缝连接形式及焊缝类型焊缝连接形式按被连接构件间的相对位置分为对接、 搭接、T形连接和角接四种(详见 附图十六)。所采用的焊缝按其构造来分, 主要有对接焊缝和角焊缝两种类型。 T形连接和 角连接根据板厚、焊接方法、焊缝受力情况,可采用角焊缝或开坡口的对接焊缝。焊缝按其工作性质来分有强度焊缝和密强焊缝两种。强度焊缝只作为传递内力之用, 密强焊缝除传递内力外,还须保证不使气体或液体渗漏。焊缝按施焊位置分,有俯焊(

10、平焊) 、立焊、横焊和仰焊四种 (详见附图十七 )。俯焊 的施焊工作方便,质量好,效率高;立焊和横焊是在立面上施焊的竖向和水平焊缝,生产 效率和焊接质量比俯焊的差一些;仰焊是仰望向上施焊,操作条件最差,焊缝质量不易保 证,因此应尽量避免采用仰焊焊缝。三、焊缝缺陷、质量检验和焊缝级别1. 焊缝缺陷焊缝缺陷是指焊接过程中,产生于焊缝金属或邻近热影响区钢材表面或内部的缺陷。常见的缺陷有:焊缝尺寸偏差;咬边,如焊缝与母材交界处形成凹坑;弧坑,起弧 或落弧处焊缝所形成的凹坑;未熔合,指焊条熔融金属与母材之间局部未熔合;母材 被烧穿;气孔;非金属夹渣;裂纹。以上这些缺陷,一般都会引起应力集中削弱焊 缝有效

11、截面, 降低承载能力, 尤其裂纹对焊缝受力的危害最大。 它会产生严重的应力集中, 并易于扩展引起断裂,按规定是不允许发生裂纹的。因此,若发现焊缝有裂纹,应彻底铲 除后补焊。2. 焊缝质量检验和焊缝级别根据结构类型和重要性,钢结构工程施工质量验收规范(GB50205-2001 )将焊缝质量检验级别为三级。川级检验项目规定只对全部焊缝做外观检查,即检验焊缝实际尺寸是 否符合要求和有无看得见的裂纹、咬边和气孔等缺陷;I级焊缝超声波和射线探伤的比例 均为100% H级焊缝超声波和射线探伤的比例均为20%且均不小于200mm当焊缝长度小于200mm时,应对整条焊缝探伤。探伤应符合钢焊缝手工超声波探伤方法

12、和探伤结构 分级法GB11345或钢熔化焊对接接头射线照像和质量分级GB3323的规定。钢结构中一般采用川级焊缝,可满足通常的强度要求,但其对接焊缝的抗拉强度有较 大的变异性,钢结构设计规范(GB50017-)送审稿规定,其设计值仅为主体钢材的85%左右。因而对有较大拉应力的对接焊缝,以及直接承受动力荷载构件的较重要的焊缝,可 部分采用H级焊缝,对动力和疲劳性能有较高要求处可采用I级焊缝。四、焊缝符号及标注方法 在钢结构施工图上缝应采用焊缝符号表示,焊缝符号及标注方法应按建筑结构制图标准(GB/T50105-2001 )和焊缝符号表示法(GB324-88)执行。焊缝符号由指引线和两条相互平行的

13、基本符号组成,必要时还可加上辅助符号、补充 符号和焊缝尺寸符号。(1) 指引线一般由单箭头的指引和两条相互平行的基准线所组成。一条基准线为实线,另一条为虚线,均为细线, ( 详见附图十八 )。虚线的基准线可以画在实线基准线的上侧或 下侧。基准线一般应与图纸的底边相平行,但在特殊条件下也与底边相垂直。为引线的方 便,允许箭头弯折一次。(2) 基本符号用以表示焊缝的形状。下表中摘录了一些常用的焊缝基本符号。基本符 号与基准线的相对位置应按下列规则表示:- 23 -焊缝符号中的基本符号、辅助符号和补充符号摘录 如果焊缝在接头的非箭头侧,基本符号应标在基准线的虚线侧; 当为双面对称焊缝时,基准线可只画

14、实线一条; 当为单面的对接焊缝如 V形焊缝、U形焊缝,则箭头线应指向有坡口一侧-# -(3)辅助符号是表示焊缝表面形状特征的符号,如对接焊缝表面余高的部分需加 工,使其与焊件表面齐平,则可在对接焊缝符号上加一短画,此短画即为辅助符号。(4)当焊缝分面比较复杂时,在标准焊缝代号的同时,可在图形边的焊缝处加粗线、栅线等强调焊缝的重要性(详见附图十九)。第三节焊接残余应力和焊接残余变形焊接构件在未受荷载时,由于施焊时在焊件上产生局部高温所形成的不均匀温度 场而引起的内应力和变形,称为焊接应力和焊接变形。它会直接影响到焊接结构的制造 质量、正常使用,并且是形成各种焊接裂纹的因素之一,应在设计、制造和焊

15、接过程中 加以控制和重视。一、焊接残余应力的种类和产生的原因焊接应力有暂时应力与残余应力之分。暂时应力只在焊接过程中一定的温度条件 下存在,当焊件冷却至常温时,暂时应力即行消失。焊接残余应力是指焊件冷却后残留 在焊件内的应力。从结构的使用要求来看,焊接残余应力有着重要意义。残余应力按其 方向可分为纵向、横向和沿厚度方向的应力三种。1. 纵向焊接残余应力焊接过程一个不均匀加热和冷却的过程。在施焊时,焊件上产生不均匀的温度场, 焊缝及附近温度最高,可达 1600 C以上,其邻近区域则温度急剧下降。不均匀的温度场 将产生不均匀的膨胀。焊缝及附近高温处的钢材膨胀最大,由于受到两侧温度较低,膨 胀较小的

16、钢材的限制,产生了热状态塑性压缩。焊缝冷压时,被塑性压缩的焊缝区趋向 于缩得比原始长度稍短,这种缩短变形受到焊缝两侧钢材的限制,使焊缝区产生纵向拉 应力。在低碳钢和低合金钢中,这种拉应力以常达到钢材的屈服强度。焊接残余应力是 荷载未作用时的内应力,因此会在焊件内部自相平衡, 这就必然在距焊缝稍远区域应力。用三块剪切下料的钢板焊成的工字形截面,纵向焊接残余应力分布(详见附图二十)。2. 横向残余应力横向残余应力产生的原因有:由于焊缝纵向收缩,两块钢板趋向于外弯成弓形的 趋势,但在实际上焊缝将两块钢板连成整体,不能分开,于是在焊缝中部将产生横向拉 应力,而在两端产生横向压应力。焊缝在施焊过程中,先

17、后冷却的时间不同,先焊的 焊缝已经凝固,且具有一定的强度,会阻止后焊焊缝在横向的自由膨胀,使其产生横向 的塑性压缩变形。当焊缝冷却时,后焊焊缝的收缩受到已凝固焊缝的限制而产生横向拉 应力,同时在先焊部分的焊缝内产生横向压应力。横向收缩引起的横向应力与施焊方向 及先后次序有关,焊缝的横向残余应力是上述两种原因产生的应力的合成(详见附图二十一)。3. 沿焊缝厚度方向的残余应力在厚钢板的连接中,焊缝需要多层施焊。因此,除有纵向和横向残余应力(;=y) 之外,沿厚度方向还存在着残余应力 (;z)(详见附图二十二)。这三种应力可能形成比较 严重的同号三轴应力;会大大降低结构连接的塑性。这就是焊接结构易发

18、生脆性破坏的 原因之一。以上分析是焊件在无外加约束情况下的焊接残余应力。若焊件施焊时处在约束状 态,如采用强大夹具或焊件本身刚度较大等,焊件将因不能自由伸缩变形而产生更大的 焊边残余应力,且随约束程度增加而增大。二、焊接残余变形如前所述,焊接过程中的局部加热和不均匀的冷却收缩,使焊件在产生残余应力的 同时还将伴随产生焊接残余变形,如纵向和横向收缩、弯曲变形、角变形、波浪变形和 扭曲变形等(详见附图二十三)。三、焊接残余应力和残余变形的影响1. 焊接应力对结构性能的影响(1) 静力强度 对于具有一定塑性的钢材,在静力荷载作用下,因焊接残余应力是 自相平衡力系,它不影响结构的静力强度。(2) 刚度

19、当残余应力与外加荷载的应力同号相加以后,该部分材料将提前进入屈 服阶段,局部形成塑性区而刚度降为零,继续增加的外力将仅由弹性区承担,因此构件 变形将加快,刚度降低。(3) 构件的稳定性 轴心受压、受弯和压弯构件等可能在荷载引起的压应力作用下, 而丧失整体稳定(即发生屈曲)。这些构件中荷载引起的压应力与截面残余压应力叠加时, 会使部分截面提前达到受压屈服强度而进入塑性受压状态。这部分截面丧失了继续承受 荷载的能力,降低了刚度,对保证构件稳定也不再起作用,因而将降低构件的整体稳定 性。(4) 疲劳强度和低温冷脆由于残余应力可能为三向号应力状态,材料在这种应力状态下易转向脆性,使裂纹容易产生和开展,

20、疲劳强度也因而降低。尤其在低温动载作 用下,更易导致低温脆性断裂。2. 焊接残余变形对结构的影响焊接残余应力不仅影响结构的尺寸,使装配困难,影响使用质量,而且过大的变形 将显著降低结构的承载能力,甚至使结构不能使用。因此,在设计和制造时必须采取适 当措施来减小残余应力和残余变形的影响。如果残余变形超出验收规范的规定,必须加 以矫正,使其不致影响构件的使用和承载能力。四、减小焊接残余应力和焊接残余变形的方法残余应力和残余变形在焊接结构中是相互关连的。若为了减小残余变形,在施焊时 对焊件加强约束,则残余应力将随之增大。反之则相反。因此,随意加强约束并不尽合 理。正确的方法应从设计和制造、焊接工艺上

21、采取一些有效措施。1. 合理的焊缝设计(1)焊缝尺寸要适当,焊脚尺寸不宜过大,在构造容许范围内,宜用细长焊缝,不宜采用较粗短焊缝。(2)焊缝不宜过分集中,并应尽量避免三向焊缝交叉。当不可避免时,应采取措施 加以改善,也可使主要焊缝连续通过,而使次要焊缝中断(详见附图二十四)。2. 合理安排焊接及制造工艺(1)在焊接工艺上,应选择使焊件易于收缩并可减小残余应力的焊接次序,如分段退焊、分层焊、对角跳焊和分块拼焊等(详见附图二十五)。(2)在制造工艺上,可采用预先反变形、对厚钢板焊前预热(在焊道两侧各80100mm范围均匀加热到 100C150C )及焊后退火(加热至600C后缓冷)或锤击法(用手锤

22、轻 击焊缝表面使其延伸,以减小焊缝中部分残余拉应力)等。(3)对焊件尺寸收缩,应在下料时预加收缩余量。当焊接残余变形过大时,可采用 机械方法顶压进行冷矫正或局部加热后冷缩进行矫正。但对于低合金钢不宜使用锤击方 法进行矫正。第四节焊接连接的构造和计算在钢结构的焊接连接较多的采用对接焊接和角接焊接,对接焊接传力直接、平顺、 没有显著的集力集中现象。角焊缝构造简单,施工方便,但静力性能特别是动力性能较 差。、对接焊缝的计算1 在与其长度方向垂直的轴心拉力或轴心压力作用下:N式中 N 轴心拉力或压力;lw 焊缝长度;tw 焊缝厚度,在对接接头中为连接件的较小厚度,在T形接头中为腹板的厚度;wft 、对

23、接焊缝的抗拉、抗压强度设计值。-35 -2.在正应力二和剪应力作用时:常或Tcw式中 f:对接焊缝的抗剪强度设计值。v符合tgr乞1.5时,其强度在同时受有较大正应力和剪应力处,尚应按下式的折算应力计算其强度:注:1.当承受轴心力的板件用斜焊缝对接,焊缝与作用力间的夹角可不计算。2 当对接焊缝无法采用引弧板施焊时,计算中应将每条焊缝的长度各减去10mm3在对接焊缝连接中,外力在各条对接焊缝中的分配以及对接焊缝中应力的分布和 大小,与连接的形式和焊缝所在部位的则度等因素有关,计算时应予以充分考虑。下表 列出了几种常用对接焊缝连接的焊缝强度计算公式。对接焊缝连接的强度计算方式连接形式及受力情况计算

24、内容计算公式拉应力或压应力正应力剪应力正应力剪应力折算应力正应力剪应力折算应力6MiWtwlwtfv二-N_M_ 常或 fwAwWwt CVSwIwtfvWWww ftw 或 fcw在正应力 和剪应力 都较大的 地方才需 要计算折 算应力,如 图中a点处如连接在 翼缘处无 横向加劲 肋加强,则 计算正应力二1时也 不应计入 翼缘水平 焊缝,即表中:N、M、V 作用于连接处的轴心力、弯矩和剪力; lw 焊缝的计算长度; t焊缝的厚度;A、Ww 焊缝截面的面积和抵抗矩;Sw 所求剪应力处以上的焊缝截面对中和轴的面积矩; I w 焊缝截面的惯性矩; y1 a点到中和轴的距离;Swi 计算a点剪应力所

25、用的焊缝截面的面积矩;Aw 竖直焊缝的截面积,Aw = ht ;h 竖直焊缝的长度(即牛腿截面高度)。、角焊缝的计算角焊缝分直角焊缝和斜角角焊缝两大类。1. 直角角焊缝的强度应按下列情况进行计算:(1)直接承受动力荷载结构中的直角角焊缝计算:a在通过焊缝形心的拉力、压力或剪力作用下:式中ho角焊缝的有效厚度,对直角角焊缝取0.7hf,hf为较小焊脚尺寸;lw 角焊缝的计算长度,对每条焊缝取其实际长度减去10mm ;ffW角焊缝的强度设计值。b在其它力或各种力综合作用下, 式中匚f按角焊缝的有效截面(helw )计算,垂直于焊缝长度方向的应力;t按角焊缝的有效截面计算,沿焊缝长度方向的剪应力。(

26、2)承受静力荷载和间接承受动力荷载结构中的直角角焊缝计算:a. 在与焊缝长度方向垂直的轴心力作用下:Nhe1 w 1.22 fb. 在与焊缝长度方向平行的轴心力作用下:c. 在其它力或各种力综合作用下,二f和f的共同作用处:1.22(4)在角焊缝连接中,外力在各条角焊缝中的分配与连接的形式和角焊缝所在部位 的刚度等因素有关,计算时应予充分考虑。下表列出了几种常用角焊缝连接的直角角焊 缝强度计算公式。直角角焊缝连接的强度计算公式项次连接形式及受力情况计算公式2B13田F-r-可!-Lc-表中:0.7hf lw ff0.7 : f hfihf2 lw6M2 0.7hflw 2 0.7htl;w f

27、fw2 V20.7hftw|.5M乞 f ffwWw12. Vi:2 Ww2AwAwW-ff焊缝“1”点处:焊缝“ 2”点处:如连接在翼缘 无横向加劲肋 加强,则只有竖 直焊缝传力;这 时,应按3计算hf (hf1、hf2)角焊缝的较小焊脚尺寸;x lw 连接一边的焊缝计算长度;Ww1 Wv2 焊缝有效截面对1点和2点的抵抗矩;Aw 腹板连接焊缝(竖直焊缝)的有效截面面积;A焊缝有效截面面积;lwp 焊缝有效截面对其形 o级惯矩,其值为:Iwp = Iwx Twy(4)角钢与钢板连接的角焊缝hfi、lwi一个角钢肢背侧焊缝的焊脚尺寸和计算长度; hf2、lw2 一个角钢肢尖侧焊缝的焊脚尺寸和计

28、算长度; hf3、lw3 一个角钢端焊缝的焊脚尺寸和计算长度;k2 角钢肢背和肢尖的焊缝内力分配系数,按下表确定:项次角钢类型连接形式焊缝内力分配系数ki (肢背)k.2 (肢尖)1等边角钢i h0.700.302不等边角钢 短边相连10.750.253不等边角钢 长边相连0.650.35(5)圆钢与平板、圆钢与圆钢之间的焊缝,应按下式计算抗剪强度:N 十ffhe lw式中N 作用在圆钢上的轴心力;X lw 焊缝的计算长度之和;he 焊缝的有效厚度:对圆钢与平板的连接,he =0.77ht ;对圆钢与圆钢的连接,he应接下式计算:he = 0.1 d1 2d2 - a式中 di 大圆钢直径;d

29、2 小圆钢直径;a焊缝表面至两个圆钢公切线的距离。第五节普通螺栓连接的构造和计算一、普通螺栓的种类和特性钢结构采用的普通螺栓形式为大六角头型,粗牙普通螺栓,其代号用字母M与公称直径(毫米)表示。工程中常用 M18 M20 M22、M24根据螺栓的加工精度,普通螺栓又 分为C级螺栓(原粗制螺栓)和A级及B级螺栓(原精制和半精制螺栓)两种。C级螺栓4.6 级或4.8级钢制作,而 A级和B级螺栓采用8.8级钢材制作;C级螺栓加工粗糙,尺寸 不够准确,只要求H类孔(在单个零件上一次冲成或不用钻模钻成设计孔径的孔),成本低,栓径比孔径小 1.52.0mm。A级和B级螺栓须以机床车削加工,精度较高,要求I

30、 类孔,孔径与栓径相等,只分别允许其有正和负公差,因此栓杆和螺孔间的空隙为仅为 0.3mm左右。由此可见,A级和B级螺栓与螺孔为紧配合,受剪性能较好,变形很小,但 制造和安装过于费工,价格昂贵。目前在钢结构中应用较少。C级螺栓由于与螺栓孔的空隙较大,当传递剪力时,连接变形大,工作性能差,但传递拉力的性能仍较好,所以 C级螺栓广泛用于需要装拆的连接承受拉力的安装连接,不重要的连接或作安装时的临 时固定等。对直接承受动力荷载的普通螺栓连接应采用双螺帽或其它能防止螺帽松动的 有效措施。在钢结构施工图上需将螺栓及螺孔的施工要求,用图形表示清楚,以免引起混淆(详见附图二十六)。详细表示方法参见建筑结构制

31、图标准(GB/T 50105-2001)。二、普通螺栓连接的构造要求1. 螺栓的直径在同一结构连接中,无论是临时安装螺栓还是永久螺栓,为了便于制造,宜用一种 直径d。螺栓直径d的选择根据连接构件的尺寸和受力大小而定。常用的标准螺栓直径 是M16, M18 M2Q M22, M24等规格。螺栓直径选得合适与否,将影响到螺栓数目及连 接节点的构造尺寸。2. 螺栓的排列及间距 螺栓的排列应简单、统一而紧凑,满足受力要求,构造合理又便于安装。排列方式 有并列排列和错列两种,并列较简单,错列较紧凑 (详见附图二十七) 。(1)受力要求 螺栓孔(d0)的最小端距(沿受力方向)为2d。,以免板端被剪掉;螺栓

32、孔的最小边距 (垂直于受力方向 )为 1.5 d0 (切割边)或 1.2 d0 (轧成边)。在型钢上, 螺栓应排列在型钢孔距规线上。中间螺孔的最小间距(栓距和线距)为3d。,否则螺孔周围应力集中的相互影响较大,且对钢板的截面削弱过多,从而降低其承载能力。(2)构造要求 螺栓的间距也不宜过大, 尤其是受压板件当栓距过大时, 容易发生凸曲现象。板和刚性构件 (如槽钢、角钢等 )连接时,栓距过大不易紧密接触,潮气易于侵 入缝隙而锈蚀。按规范规定,栓孔中心最大间距受压时为12 d0或18tmin ( tmin为外层较薄板件的厚度),受拉时为16do或24t min,中心构件边缘最大距离为 4do或8t

33、min。(3)施工要求 螺栓应有足够距离,以便于转动扳手,拧紧螺母。 根据上述螺栓的最大、最小容许距离,排列螺栓时宜按最小容许距离取用,且宜取5mm的倍数,并按等距离布置,以缩小连接的尺寸。最大容许距离一般只在起连系作用 的构造连接中采用。三、普通螺栓连接的受力性能和强度计算 普通螺栓连接,按螺栓传力方式可分为受剪螺栓连接、受拉螺栓连接和拉剪螺栓连 接三种。受剪螺栓连接是靠栓杆受剪和孔壁承压传力;受拉螺栓连接是靠沿栓杆轴方向 受拉传力;拉剪螺栓连接则同时兼有上述两种传力方式。(一)受剪螺栓连接1. 受力性能和破坏形式单个螺栓受剪情况。在开始受力阶段,作用力主要靠钢板之间的摩擦力来传递。由 于普

34、通螺栓坚固的预拉力很小,即板件之间的摩擦力也很小,当外力逐渐增长到克服摩 擦力后,板件发生相对滑移,而使栓杆和孔壁靠紧,此时栓杆受剪,而孔壁承受挤压。 随着外力的不断增大,连接达到其极限承载能力而发生破坏 (详见附图十二八) 。受剪螺栓连接在达到极限承载力时可能出现如下五种破坏形式 (详见附图二十九) ;(1)栓杆剪断 当螺栓直径较小而钢板相对较厚时,可能发生。(2)孔壁挤压坏 当螺栓直径较大钢板相对薄时,可能发生。(3)钢板拉断 当钢板因螺孔削弱过多时,可能发生。(4)端部钢板剪断 当顺受力方向的端距过小时,可能发生。(5)栓杆受弯破坏 当螺栓过于细长时,可能发生。上述破坏形式中的后两种在选

35、用最小容许端矩2 d0和使螺栓的夹紧长度不超过5d的条件下,均不会发生。前三种形式的破坏,则需通过计算来防止的。2. 强度计算如前所述,受剪螺栓连接按承载能力极限状态需计算栓杆受剪和孔壁承压载力,以及钢板受拉或受压承载力计算n = N/N;然后按实际确定的螺栓数目 n进行布置排列。螺栓群在弯矩M作用下的抗拉计算普通C级螺栓在弯矩作用下,上部螺栓受拉。与螺栓群拉力相平衡的压力产生于牛 腿和柱的连接面上,精确确定中和轴的位置的计算比较复杂。通常近似地假定中和轴在 最下边一排螺栓轴线上 (详见附图三十),并且忽略压力所产生的弯矩 (因力臂很小)。 因此 M = m(Nyjy2 川 NJ yn)二 m

36、二:NJ yi从而可得螺栓所受最大拉力MNiM y1m y2P时,则螺栓可能达到材料屈服强度,在卸荷后使连接产生松弛现象,预拉力降低。因此,规范偏安全地规定单个高强度螺栓的抗拉承载力设计值为Ntb =0.8P(2) 受轴心力N作用的抗拉高强度螺栓连接计算受轴心力作用时的高强度螺栓连接,其受力的分析方法和普通螺栓一样,先按 n=N/0.8P确定连接所需螺栓数目,然后进行布置排列。(3) 螺栓群在弯矩作用下的抗拉连接计算连接承受弯矩 M作用,若采用摩擦型高强度螺栓,在弯矩M作用下,由于高强度螺栓预拉力较大,被连接构件的接触面一直保持着紧密配合,中和轴保持在螺栓群形心轴线0-0。最外面的螺栓所受最大

37、拉力Nt1,其强度条件为N1t忙2 Yi Ntb =0.8P式中Yi 螺栓至中和轴(过螺栓群形心)的垂直距离;Y1 受拉力最大螺栓“ 1”至中和轴的距离。3. 拉剪高强度螺栓连接的强度计算(1)单个拉剪高强度螺栓的抗剪承载力设计值当高强度螺栓随沿杆轴方向的外拉力Nt作用时,不但构件摩擦面间的压紧力将由P减至P-Nt,且根据试验,此时摩擦面抗滑移系数J亦随之降低,故螺栓在承受拉力时以作为补偿。因此,单个拉剪高强度应满足下式要求:Nv 4.9n卜i(P -1.25NJ式中Nt应满足Nt空0.8P。也可按正式等价地计算:NtbNt式中Nv,Nt 一个高强螺栓所承受的剪力和拉力;N , Ntb 单个高强度螺栓的受剪、受拉承载力设计值,分别按式(3-43)和(3-44) 计算。(2)拉剪高强度螺栓连接计算(详见附图三十二)。为一受偏心力F作用的高强度螺栓连接的顶接,将力F向螺栓群形心简化后,或得等效荷载V=F,M =F e。因此,在形心轴0-0以上螺栓为同时承受外拉力M yNti2和剪力Nvi =V/n的拉剪螺栓。计算时可采有下列两个公式:m yiNv1 空0.9nfP 1.25Nt1Nv1Nt1NJN?1n或V 乞 0.9nf八P1.25Ntii =1以上两式中 山、Nti均应满足Nt1 (Nti)岂0.8P。仅计算不利拉剪螺栓“ 1”在承受拉力Nt1后,降

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论