UASB升流式厌氧污泥床_第1页
UASB升流式厌氧污泥床_第2页
UASB升流式厌氧污泥床_第3页
UASB升流式厌氧污泥床_第4页
UASB升流式厌氧污泥床_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、uasb一、引言厌氧生物处理作为利用厌氧性微生物的代谢特性,在毋需提供外源能量的条 件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体。厌氧生物 处理法不仅适用于高浓度有机废水,进水 bod 最高浓度可达数万 mg/l,也可适 用于低浓度有机废水,如城市污水等。厌氧生物处理过程能耗低;有机容积负荷高,一般为 5 10kgcod/m3.d , 最高的可达 30-50kgcod/m3.d ;剩余污泥量少;厌氧菌对营养需求低、耐毒性 强、可降解的有机物分子量高;耐冲击负荷能力强;产出的沼气是一种清洁能源。在全社会提倡循环经济,关注工业废弃物实施资源化再生利用的今天,厌氧 生物处理显然是能够

2、使污水资源化的优选工艺。近年来,污水厌氧处理工艺发展 十分迅速,各种新工艺、新方法不断出现,包括有厌氧接触法、升流式厌氧污泥 床、档板式厌氧法、厌氧生物滤池、厌氧膨胀床和流化床,以及第三代厌氧工艺 egsb 和 ic 厌氧反应器,发展十分迅速。而升流式厌氧污泥床 uasb( up-flow anaerobic sludge bed ,注:以下简 称 uasb)工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污 水中的污染物转化成再生清洁能源沼气的一项技术。对于不同含固量污水的 适应性也强,且其结构、运行操作维护管理相对简单,造价也相对较低,技术已 经成熟,正日益受到污水处理业界的重视

3、,得到广泛的欢迎和应用。本文试图就 uasb 的运行机理和工艺特征以及 uasb 的设计启动等方面作 一简要阐述。二、uasb 的由来1971 年荷兰瓦格宁根(wageningen )农业大学拉丁格(lettinga)教授通 过物理结构设计,利用重力场对不同密度物质作用的差异,发明了三相分离器。 使活性污泥停留时间与废水停留时间分离,形成了上流式厌氧污泥床( uasb ) 反应器的雏型。 1974 年荷兰 csm 公司在其 6m3 反应器处理甜菜制糖废水时, 发现了活性污泥自身固定化机制形成的生物聚体结构,即颗粒污泥(granular sludge)。颗粒污泥的出现,不仅促进了以 uasb 为

4、代表的第二代厌氧反应器 的应用和发展,而且还为第三代厌氧反应器的诞生奠定了基础。三、uasb 工作原理uasb 由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。 在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下 部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接 触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形 式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥 床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相 分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水

5、层进 入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的 沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至 斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥 分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。基本出要求有:(1)为污泥絮凝提供有利的物理、化学和力学条件,使厌氧污泥获得并保持 良好的沉淀性能;(2) 良好的污泥床常可形成一种相当稳定的生物相,保持特定的微生态环境, 能抵抗较强的扰动力,较大的絮体具有良好的沉淀性能,从而提高设备内的污泥 浓度;(3) 通过在污泥床设备内设置一个沉淀区,使污泥细颗粒在沉淀区的污泥层

6、 内进一步絮凝和沉淀,然后回流入污泥床内。四、uasb 内的流态和污泥分布uasb 内的流态相当复杂,反应区内的流态与产气量和反应区高度相关,一般来 说,反应区下部污泥层内,由于产气的结果,部分断面通过的气量较多,形成一 股上升的气流,带动部分混合液(指污泥与水)作向上运动。与此同时,这股气、 水流周围的介质则向下运动,造成逆向混合,这种流态造成水的短流。在远离这 股上升气、水流的地方容易形成死角。在这些死角处也具有一定的产气量,形成 污泥和水的缓慢而微弱的混合,所以说在污泥层内形成不同程度的混合区,这些 混合区的大小与短流程度有关。悬浮层内混合液,由于气体币的运动带动液体以 较高速度上升和下

7、降,形成较强的混合。在产气量较少的情况下,有时污泥层与 悬浮层有明显的界线,而在产气量较多的情况下,这个界面不明显。有关试验表 明,在沉淀区内水流呈推流式,但沉淀区仍然还有死区和混合区。uasb 内污泥浓度与设备的有机负荷率有关。是处理制糖废水试验时,uasb 内污泥分布与负荷的关系。从图中可看出污泥层污泥浓度比悬浮层污泥浓度高, 悬浮层的上下部分污泥浓度差较小,说明接近完全混合型流态,反应区内污泥的 颁,当有机负荷很高时污泥层和悬浮层分界不明显。试验表明,污水通过底部 04 06m 的高度,已有 90 的有机物被转化。由此可见厌氧污泥具有极高的活 性,改变了长期以来认为厌氧处理过程进行缓慢的

8、概念。在厌氧污泥中,积累有 大量高活性的厌氧污泥是这种设备具有巨大处理能力的主要原因,而这又归于污 泥具有良好的沉淀性能。uasb 具有高的容积有机负荷率,其主要原因是设备内,特别是污泥层内保有大 量的厌氧污泥。工艺的稳定性和高效性很大程度上取决于生成具有优良沉降性能 和很高甲烷活性的污泥,尤其是颗粒状污泥。与此相反,如果反应区内的污泥以 松散的絮凝状体存在,往往出现污泥上浮流失,使 uasb 不能在较高的负荷下 稳定运行。根据 uasb 内污泥形成的形态和达到的 cod 容积负荷,可以将污泥颗粒化过程 大致分为三个运行期:(1) 接种启动期:从接种污泥开始到污泥床内的 cod 容积负荷达到

9、5kgcod/m3 d 左右,此运行期污泥沉降性能一般;(2) 颗粒污泥形成期:这一运行期的特点是有小颗粒污泥开始出现,当污泥 床内的总 ss 量和总 vss 量降至最低时本运行期即告结束,这一运行期污泥沉 降性能不太好;(3) 颗粒污泥成熟期:这一运行期的特点是颗粒污泥大量形成,由下至上逐 步充满整个 uasb。当污泥床容积负荷达到 16kgcod/m3d 以上时,可以认为 颗粒污泥已培养成熟。该运行期污泥沉降性很好。五、外设沉淀池防止污泥流失在 uasb 内虽有气液固三相分离器,混合液进入沉淀区前已把气体分离,但由 于沉淀区内的污泥仍具有较高的产甲烷活性,继续在沉淀区内产气;或者由于冲 击

10、负荷及水质突然变化,可能使反应区内污泥膨胀,结果沉淀区固液分离不佳,发生污泥流失而影响了水质和污泥床中污泥浓度。为了减少出水所带的悬浮物进 入水体,外部另设一沉淀池,沉淀下来的污泥回流到污泥床内。设置外部沉淀池的好处是:(1) 污泥回流可加速污泥的积累,缩短启动周期;(2) 去除悬浮物,改善出水水质;(3) 当偶尔发生大量漂泥时,提高了可见性,能够及时回收污泥保持工艺的 稳定性;(4) 回流污泥可作进一步分解,可减少剩余污泥量。六、uasb 的设计uasb 的工艺设计主要是计算 uasb 的容积、产气量、剩余污泥量、营养需求 的平衡量。uasb 的池形状有圆形、方形、矩形。污泥床高度一般为 3

11、8m ,多用钢筋混 凝土建造。当污水有机物浓度比较高时,需要的沉淀区与反应区的容积比值小, 反应区的面积可采用与沉淀区相同的面积和池形。当污水有机物浓度低时,需要 的沉淀面积大,为了保证反应区的一定高度,反应区的面积不能太大时,则可采 用反应区的面积小于沉淀区,即污泥床上部面积大于下部的池形。气液固三相分离器是 uasb 的重要组成部分,它对污泥床的正常运行和获良好 的出水水质起十分重要的作用,因此设计时应给予特别的重视。根据经验,三相 分离器应满足以下几点要求:1、 混和液进入沉淀区之关,必须将其中的气泡予以脱出,防止气泡进入沉 淀区影响沉淀;2、 沉淀器斜壁角度约可大于 45 度角;3、

12、沉淀区的表面水力负荷应在 0.7m3/m2.h 以下,进入沉淀区前,通过沉 淀槽低缝的流速不大于 2m/m2.h ;4、 处于集气器的液一气界面上的污泥要很好地使之浸没于水中;5、 应防止集气器内产生大量泡沫。第 2、3 两个条件可以通过适当选择沉淀器的深度面积比来加以满足。 对于低浓度污水,主要用限制表面水力负荷来控制;对于中等浓度和高浓度污水, 在极高负荷下,单位横截面上释放的气体体积可能成为一个临界指标。但是直到 现在国内外所取得的成果表明,只要负荷率不超过 20kgcod/m3.d ,uasb 高 度尚未见到有大于 10m 的报道,第三代厌氧反应器除外。污泥与液体的分离基于污泥絮凝、沉

13、淀和过滤作用。所以在运行操作过程中,应 该尽可能创造污泥能够形成絮凝沉降的水力条件,使污泥具有良好的絮凝、沉淀 性能,不仅对于分离器的工作是具有重要意义,对于整个有机物去除率更加至关 重要。特别要注意避免气泡进入沉淀区,要使固液进入沉淀区之前就与气泡很好分 离。在气液表面上形成浮渣能迫使一些气泡进入沉淀区,所以在设计中必须 事先就考虑到:(1) 采用适当的技术措施,尽可能避免浮渣的形成条件,防范浮渣层的形 成;(2) 必须要有冲散浮渣的设施或装置,在污泥反应区一旦出现浮渣的情况 下,能够及时破坏浮渣层的形成,或能够及时排除浮渣。如上所述,uasb 中污水与污泥的混合是靠上升的水流和发酵过程中产

14、生的气泡 来完成的。因此,一般采用多点进水,使进水均匀地分布在床断面上,其中的关 键是要均匀匀速、匀量。uasb 容积的计算一般按有机物容积负荷或水力停留时间进行。设计时可通过试 验决定参数或参考同类废水的设计和运行参数。七、uasb 的启动1、污泥的驯化uasb 设备启动的难点是获得大量沉降性能良好的厌氧颗粒污泥。最好的办法加 以驯化,一般需要 36 个月,如果靠设备自身积累,投产期最长可长达 12 年。实践表明,投加少量的载体,有利于厌氧菌的附着,促进初期颗粒污泥的形 成;比重大的絮状污泥比轻的易于颗粒化;比甲烷活性高的厌氧污泥可缩短启动 期。2、启动操作要点(1) 最好一次投加足够量的接

15、种污泥;(2) 启动初期从污泥床流出的污泥可以不予回流,以使特别轻的和细碎污泥跟 悬浮物连续地从污泥床排出体外,使较重的活性污泥在床内积累,并促进其增殖 逐步达到颗粒化;(3) 启动开始废水 cod 浓度较低时,未必就能让污泥颗粒化速度加快; (4)最初污泥负荷率一般在 0.1 0.2kgcod/kgtss.d 左右比较合适; (5)污水中原来存在的和厌氧分解出来的多种挥发酸未能有效分解之前,不应 随意提高有机容积负荷,这需要跟踪观察和水样化验;(6) 可降解的 cod 去除率达到 70 80左右时,可以逐步增加有机容积负荷 率;(7) 为促进污泥颗粒化,反应区内的最小空塔速度不可低于 1m/d,采用较高的 表面水力负荷有利于小颗粒污泥与污泥絮凝分开,使小颗粒污泥凝并为大颗粒。 八、uasb 工艺的优缺点uasb 的主要优点是:1、 uasb 内污泥浓度高,平均污泥浓度为 2040gvss/1;2、 有机负荷高,水力停留时间短,采用中温发酵时,容积负荷一般为 10kgcod/m3.d 左右;3、 无混合搅拌设备,靠发酵过程中产生的沼气的上升运动,使污泥床上部的污 泥处于悬浮状态,对下部的污泥层也有一定程度的搅动;4、 污泥床不填载体,节省造价及避免因填料发生堵赛问题;5、 uasb 内设三相分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论