2013年考研数学线性代数复习要点 同济大学第五版 免费_第1页
2013年考研数学线性代数复习要点 同济大学第五版 免费_第2页
2013年考研数学线性代数复习要点 同济大学第五版 免费_第3页
2013年考研数学线性代数复习要点 同济大学第五版 免费_第4页
2013年考研数学线性代数复习要点 同济大学第五版 免费_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2013年线性代数复习要点 同济大学第五版 免费概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确 :全体维实向量构成的集合叫做维向量空间. 关于:称为的标准基,中的自然基,单位坐标向量;线性无关;任意一个维向量都可以用线性表示.行列式的定义 行列式的计算:行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.若都是方阵(不必同阶),则(拉普拉斯展开式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.关于副对角线: (即:所有取自不同行不同列的个元素的乘积的代数

2、和)范德蒙德行列式:矩阵的定义 由个数排成的行列的表称为矩阵.记作:或伴随矩阵 ,为中各个元素的代数余子式. 逆矩阵的求法: : 方阵的幂的性质: 设的列向量为,的列向量为,则 ,为的解可由线性表示.即:的列向量能由的列向量线性表示,为系数矩阵.同理:的行向量能由的行向量线性表示,为系数矩阵.即: 用对角矩阵乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的向量;用对角矩阵乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的向量. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. 分块矩阵的转置矩阵:分块矩阵的逆矩阵: 分块对角阵相乘:,分块对角阵的伴随矩阵: 矩阵方程的解法():设法化成

3、 零向量是任何向量的线性组合,零向量与任何同维实向量正交. 单个零向量线性相关;单个非零向量线性无关. 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动) 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) 两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关. 向量组中任一向量都是此向量组的线性组合. 向量组线性相关向量组中至少有一个向量可由其余个向量线性表示.向量组线性无关向量组中每一个向量都不能由其余个向量线性表示. 维列向量组线性相关; 维列向量组线性无关. 若线性无关,而线性相关,则可由线性表示,且表示法唯一. 矩阵的行向量组的秩列向量

4、组的秩矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.行阶梯形矩阵 可画出一条阶梯线,线的下方全为;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是时,称为行最简形矩阵 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系; 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. 矩阵的初等变换和初等矩阵的关系:对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘;对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘.矩阵的秩 如果矩阵存在不为零的阶子式,且

5、任意阶子式均为零,则称矩阵的秩为.记作向量组的秩 向量组的极大无关组所含向量的个数,称为这个向量组的秩.记作 矩阵等价 经过有限次初等变换化为. 记作:向量组等价 和可以相互线性表示. 记作: 矩阵与等价,可逆作为向量组等价,即:秩相等的向量组不一定等价.矩阵与作为向量组等价矩阵与等价. 向量组可由向量组线性表示有解. 向量组可由向量组线性表示,且,则线性相关.向量组线性无关,且可由线性表示,则. 向量组可由向量组线性表示,且,则两向量组等价; 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. 若两个线性无关的向量组

6、等价,则它们包含的向量个数相等. 设是矩阵,若,的行向量线性无关; 若,的列向量线性无关,即:线性无关. 矩阵的秩的性质: 即:可逆矩阵不影响矩阵的秩. 若;若等价标准型. :线性方程组的矩阵式 向量式 矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立)线性方程组解的性质: 设为矩阵,若一定有解, 当时,一定不是唯一解,则该向量组线性相关. 是的上限. 判断是的基础解系的条件: 线性无关; 都是的解; . 一个齐次线性方程组的基础解系不唯一. 若是的一个解,是的一个解线性无关 与同解(列向量个数相同),则: 它们的极大无关组相对应,从而秩相等; 它们对应的部分组有一样的线性相关性

7、; 它们有相同的内在线性关系. 两个齐次线性线性方程组与同解. 两个非齐次线性方程组与都有解,并且同解. 矩阵与的行向量组等价齐次方程组与同解(左乘可逆矩阵); 矩阵与的列向量组等价(右乘可逆矩阵). 关于公共解的三中处理办法: 把(i)与(ii)联立起来求解; 通过(i)与(ii)各自的通解,找出公共解;当(i)与(ii)都是齐次线性方程组时,设是(i)的基础解系, 是(ii)的基础解系,则 (i)与(ii)有公共解基础解系个数少的通解可由另一个方程组的基础解系线性表示.即:当(i)与(ii)都是非齐次线性方程组时,设是(i)的通解,是(ii)的通解,两方程组有公共解可由线性表示. 即: 设

8、(i)的通解已知,把该通解代入(ii)中,找出(i)的通解中的任意常数所应满足(ii)的关系式而求出公共解。标准正交基 个维线性无关的向量,两两正交,每个向量长度为1.向量与的内积 . 记为:向量的长度 是单位向量 . 即长度为的向量. 内积的性质: 正定性: 对称性: 双线性: 的特征矩阵 .的特征多项式 . 是矩阵的特征多项式的特征方程 . ,称为矩阵的迹. 上三角阵、下三角阵、对角阵的特征值就是主对角线上的各元素. 若,则为的特征值,且的基础解系即为属于的线性无关的特征向量. 一定可分解为=、,从而的特征值为:, . 为各行的公比,为各列的公比. 若的全部特征值,是多项式,则: 若满足的

9、任何一个特征值必满足的全部特征值为;. 初等矩阵的性质: 设,对阶矩阵规定:为的一个多项式. 的特征向量不一定是的特征向量. 与有相同的特征值,但特征向量不一定相同.与相似 (为可逆矩阵) 记为:与正交相似 (为正交矩阵)可以相似对角化 与对角阵相似. 记为: (称是的相似标准形) 可相似对角化 为的重数恰有个线性无关的特征向量. 这时,为的特征向量拼成的矩阵,为对角阵,主对角线上的元素为的特征值.设为对应于的线性无关的特征向量,则有:. :当为的重的特征值时,可相似对角化的重数 基础解系的个数. 若阶矩阵有个互异的特征值可相似对角化. 若可相似对角化,则其非零特征值的个数(重根重复计算).

10、若=, 相似矩阵的性质:,从而有相同的特征值,但特征向量不一定相同.是关于的特征向量,是关于的特征向量. 从而同时可逆或不可逆; (若均可逆); (为整数);, 前四个都是必要条件. 数量矩阵只与自己相似. 实对称矩阵的性质: 特征值全是实数,特征向量是实向量; 不同特征值对应的特征向量必定正交; :对于普通方阵,不同特征值对应的特征向量线性无关;一定有个线性无关的特征向量.若有重的特征值,该特征值的重数=;必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形;两个实对称矩阵相似有相同的特征值.正交矩阵 为正交矩阵的个行(

11、列)向量构成的一组标准正交基. 正交矩阵的性质: ; ; 正交阵的行列式等于1或-1; 是正交阵,则,也是正交阵; 两个正交阵之积仍是正交阵; 的行(列)向量都是单位正交向量组.二次型 ,即为对称矩阵,与合同 . 记作: ()正惯性指数 二次型的规范形中正项项数 负惯性指数二次型的规范形中负项项数符号差 (为二次型的秩) 两个矩阵合同它们有相同的正负惯性指数他们的秩与正惯性指数分别相等. 两个矩阵合同的充分条件是: 两个矩阵合同的必要条件是: 经过化为标准形. 二次型的标准形不是唯一的,与所作的正交变换有关,但非零系数的个数是由 唯一确定的. 当标准形中的系数为-1或0或1时,称为二次型的规范

12、形 . 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数. 惯性定理:任一实对称矩阵与唯一对角阵合同. 用正交变换化二次型为标准形: 求出的特征值、特征向量; 对个特征向量正交规范化; 构造(正交矩阵),作变换,则新的二次型为,的主对角上的元素即为的特征值.施密特正交规范化 线性无关, 单位化: 技巧:取正交的基础解系,跳过施密特正交化。让第二个解向量先与第一个解向量正交,再把第二个解向量代入方程,确定其自由变量. 例如:取,.正定二次型 不全为零,.正定矩阵 正定二次型对应的矩阵. 为正定二次型(之一成立): ,; 的特征值全大于; 的正惯性指数为; 的所有顺序主子式全大于; 与合同

13、,即存在可逆矩阵使得; 存在可逆矩阵,使得; 存在正交矩阵,使得 (大于). 合同变换不改变二次型的正定性. 为正定矩阵 ; . 为正定矩阵也是正定矩阵. 与合同,若为正定矩阵为正定矩阵 为正定矩阵为正定矩阵,但不一定为正定矩阵.行列式中出现的公式和要熟记的结论1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式;2. 代数余子式的性质:、和的大小无关;、某行(列)的元素乘以其它行(列)元素的代数余子式为0;、某行(列)的元素乘以该行(列)元素的代数余子式为;3. 代数余子式和余子式的关系:4. 设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则

14、;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5. 行列式的重要公式:、主对角行列式:主对角元素的乘积;、副对角行列式:副对角元素的乘积;、上、下三角行列式():主对角元素的乘积;、和:副对角元素的乘积;、拉普拉斯展开式:、范德蒙行列式:大指标减小指标的连乘积;、特征值;6. 对于阶行列式,恒有:,其中为阶主子式;7. 证明的方法:、;、反证法;、构造齐次方程组,证明其有非零解;、利用秩,证明;、证明0是其特征值;2、矩阵1. 是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等

15、矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2. 对于阶矩阵: 无条件恒成立;3.4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均、可逆:若,则:、;、;、;(主对角分块)、;(副对角分块)、;(拉普拉斯)、;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2. 行最简形矩阵:、只能通过初等行变换获得;、每行首个非0元素必须为

16、1;、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)若,则可逆,且;、对矩阵做初等行变化,当变为时,就变成,即:;、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4. 初等矩阵和对角矩阵的概念:、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;、,左乘矩阵,乘的各行元素;右乘,乘的各列元素; 、对调两行或两列,符号,且,例如:;、倍乘某行或某列,符号,且,例如:;、倍加某行或某列,符号,且,如:;5. 矩阵秩的基本性质:、;、;、若,则;、若、可逆,则;(可逆矩阵不影响矩阵的秩)、;()、;()

17、、;()、如果是矩阵,是矩阵,且,则:()、的列向量全部是齐次方程组解(转置运算后的结论);、若、均为阶方阵,则;6. 三种特殊矩阵的方幂:、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;、型如的矩阵:利用二项展开式;二项展开式:;注:、展开后有项;、组合的性质:;、利用特征值和相似对角化:7. 伴随矩阵:、伴随矩阵的秩:;、伴随矩阵的特征值:;、8. 关于矩阵秩的描述:、,中有阶子式不为0,阶子式全部为0;(两句话)、,中有阶子式全部为0;、,中有阶子式不为0;9. 线性方程组:,其中为矩阵,则:、与方程的个数相同,即方程组有个方程;、与方程组得未知数个数相同

18、,方程组为元方程;10. 线性方程组的求解:、对增广矩阵进行初等行变换(只能使用初等行变换);、齐次解为对应齐次方程组的解;、特解:自由变量赋初值后求得;11. 由个未知数个方程的方程组构成元线性方程:、;、(向量方程,为矩阵,个方程,个未知数)、(全部按列分块,其中);、(线性表出)、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1. 个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2. 、向量组的线性相关、无关有、无非零解;(齐次线性方程组)、向量的线性表出是否有解;(线性方程组)、向量组的相互线性表示是否有

19、解;(矩阵方程)3. 矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)4. ;(例15)5. 维向量线性相关的几何意义:、线性相关;、线性相关坐标成比例或共线(平行);、线性相关共面;6. 线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论)8. 方阵可逆存在有限个初等矩阵,使;、矩阵行等价:(左乘,可逆)与同解、矩阵列等价:(右乘,可逆);、矩阵等价:(、可逆);9. 对于矩阵与:、若与行等价,则与的行秩相等;、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;、矩阵的初等变换不改变矩阵的秩;、矩阵的行秩等于列秩;10. 若,则:、的列向量组能由的列向量组线性表示,为系数矩阵;、的行向量组能由的行向量组线性表示,为系数矩阵;(转

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论