Ψ的前世今生_第1页
Ψ的前世今生_第2页
Ψ的前世今生_第3页
Ψ的前世今生_第4页
Ψ的前世今生_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、9的前世今生【物理世界】 的前世今生 译者:永恒的贝多芬原文作者: Jon Cartwright 2013-05-27 19:19:31 双语对照 | 查 看译者版本译者前言:这篇文章涉及一些科学哲学概念,这里先把最主要的一个简单说下,否则可能会影响理解。当然译者也就这 点水平,下面的解释也绝不是专业的说法,各位读者就将就 将就吧。实在:抽象名词。指客观存在着的一种本质性的东西。本译 文中但凡出现“实在”二字,都是指这个意思。导言:量子理论的核心(有人说它也是物理学的核心)是波 函数。但它真的是某种波吗?不过一个新理论给了这些怀疑 者们当头一棒,且看乔恩卡特莱特在这篇文章里是怎么说的自1926

2、年发表波动方程之后,埃尔文薛定谔便备受称赞。爱因斯坦曾在写给他的信中称:“你的工作是真正的天才之作! ”一个月后,薛定谔的同事,奥地利物理学家保罗艾伦费斯特仍对此惊叹不已。 他坦言道: “在过去的两周中, 我们 小组每天都要在黑板前花上几个小时,以求计算出所有优美 的结果。”八十多年后的今天,物理学家仍在试图掌握那些纷繁复杂的 结果。薛定谔方程是历史上最著名的方程之一,描述任意体 系的量子态如何随时间演化。它是量子力学的基石,而后者 为我们带来了计算机、激光、太阳能电池和核反应堆。然而 薛定谔方程的核心,也就是它的解,是一个很神秘的项,我 们称之为波函数。物理学家都知道它,但它的意义到底是什

3、么呢?它是否对应于某种真实的波呢? 这些问题看上去似乎无关紧要,但事实并非如此。原则上, 任何物质都有波函数电子、原子、人体、星球,甚至整 个宇宙本身都是如此。如要把它们以真实的物质性的波刻画 出来,往简单说都会是一个挑战。出于这个原因,很多物理 学家都猜测波函数只是反映了我们对自然的有限认识。也许 我们将来会发现一个更深层次的实在,无需借助波函数这一 概念,就可以解释量子世界所有的谜团。现在这个希望似乎有让人误入歧途之嫌。根据英国一个物理 团队提出的定理,波函数并不是什么近似性的认识,它确实 具有某种物质性。这一结论已经传遍了整个量子物理学界, 其中很多人还在疑虑我们能否对实在有一个直觉性的

4、把握。 回溯经典薛定谔自己从来没想过事情会如此展开。 1925 年,也就是 他完成其重大成果的前一年,德国物理学家维尔纳海森堡, 马克斯玻恩和帕斯卡约尔丹利用一种被称为矩阵力学的方 法解释了原子的结构。矩阵力学是一种需要大量处理数字的 方法,进行运算时还需要考虑计算顺序。这一方法很不错, 实际上它也是量子力学的第一个完整表述,但它不能向我们 呈现出任何实在性的图像。薛定谔希望回避这种抽象的方法 而直接面对连续、可视的经典物理世界。当时,要达到这一目的的方法已经初现端倪。在德国物理学 家马克斯普朗克的工作的基础上,爱因斯坦证明光既可以解 释为波,又可以解释为粒子束,这种粒子后来被称为光子。 随后

5、,法国物理学家路易斯德布罗意提出了一个更广泛的论 断,即一种广义的“波粒二象性”,认为所有的物质都有一个 波与之联系,反之亦然。薛定谔沿着这一思路前进,并做出 了一个巨大飞跃,从而提出了他的波函数。波函数完全描述 了一个原子(实际上任何体系都是如此)的状态如何随时间 演化。它等效于一个运动方程,但这个方程必须能够满足量 子体系所有奇特的类似波动性质的行为,比如粒子间会相互 干涉,或者粒子可以同时明确地处于几个不同的地点。不过没有人知道怎么解释这个方程的解的含义。这个解就是 波函数,用希腊字母 表示。如果 9确实对应于某种物质 性的波,那这个波必然会很奇怪。和水波或声波这种存在于 三个相似的空间

6、维度的波不同, 9波存在于大量的抽象维中, 其维数随着体系实体数的增大而迅速增大。 (仅仅一小把粒 子的波函数需要的维数就比整个宇宙中的原子数还要多,而 宇宙中的原子大概有 1080 个。) 然而最大的问题关乎测量。在量子力学的正统诠释中(由于 历史原因,它有时被称为哥本哈根诠释( Copenhagen Interpretation ),处于某一量子态的体系有一个波函数按照 薛定谔方程决定的方式进行演化。假设在这个状态下,体系 没有确定的性质,也就是说,从某种程度上看,它所有的性 质都是不确定的。但只要有一个观察者对该体系进行了一次 测量,它的波函数就会坍塌:体系的性质会非决定性地(也 就是随

7、机地)确定下来。不管体系有多大,波函数的坍塌都 是瞬时的,其机制至今仍无法得到解释。 面对这些让人头痛的问题,我们就不难理解为什么那么多物 理学家会认为波函数只是对实际演变的事物的一个近似表 述了。这样看来,我们将来会找到某个能够显示我们现在关 于波函数的理论是不完全的认识的超级理论。 要理解这一点,我们最好来参考一个经典情形下的例子。假 设一个粒子沿着一维运动。在任意时刻,粒子都有确定的位 置和动量。这两个量足以完全确定粒子的状态。这样一个完 全确定的态称为“实体( ontic )”态,或实在性的态:它能完 全确定地表示出一段时间后这个粒子在做怎样的运动(图 1a)。(“ Ontic ”来源

8、于希腊语的n ,意思是“存在”。图 1 :实体态和认知态(a)经典情形下,一维运动的粒子在每个特定时刻都有确 定的位置x和动量p。这就是粒子的实体态,它能完全描述 这个粒子的情况。(b)虽然粒子具有确定的 x和p,但实验 者可能只能以一定的精度或概率知道具体的数值。因此实验 者就会把粒子的状态归为认知态,它反映出实验者对粒子的 有限认知。 当然,实验者可能只能以一定精度或概率知道粒子的位置和 动量。这可能是因为仪器不够精密,也可能是因为实验者处 理的性质是集体或宏观的。比如,温度就只能统计性地说明 组份粒子的性质。在这种情况下,实验者可以说这个粒子处 于一个“认知( epistemic )”态

9、上。认知态是我们对一个态的 部分知识:它表示粒子的有限信息(图1b)。(“ Epistemic来源于希腊语的 episteme ,意思是“知识”) 如果波函数确实是对实在的完整表述,那么根据上面的定义, 它就是实体态;而如果量子态只表示实在的部分信息,那么 波函数就是一个认知态。认知观点(史称“隐变量”观点,因 为它认为量子体系隐藏了某些信息)的支持者中包括许多知 名的科学家,其中就有爱因斯坦。他在 1945 年写给同事的 一封信里说: “我倾向于波函数不是 (完全) 描述真实事物的 观点,它对我们来说,只不过是对某个真实存在的事物在经 验上的最大认知。这就是我说量子力学对事物真实状态只能 给

10、出不完全描述的意思。”波的背后藏着什么 我们怎么来证实爱因斯坦的这个认为波函数只是一个认知 态,只是表示有限知识的态的观点呢?显然,物理学还没有 哪个超级理论可以让量子力学暴露出波函数的任何不足。但 实际上,如果有人能详细指出认知态和实体态之间的不同, 那么超级理论就可有可无了。为讨论方便,我们先假设波函 数是认知性的。也就是说,若一个物理学家为某个体系精心准备了一个确定的波函数(让我们称之为书1)该体系的真实态(实体态)还不是唯一确定的。这个由书1描述的体系实际上掩饰了几种可能的实体态,让我们记这些实体态为 入1、入2、入等等。在书1下对某个确定的实体态 入的不可见选择 可能是随即的,也可能

11、不是;物理学家并不清楚自然是不是 决定论的。但如果我们假设波函数是认知性的,那么它背后 就一定有不止一种的可能的实体态(否则它就不是对一个态 的有限认知了)。这样看来这似乎很好地阐明了什么是认知 观点,其实不然:对波函数诠释的微秒不同可不仅仅是区分 认知和实体这么简单。为了对认知观点给出一个更精确的定 义,我们必须考虑这些不同的诠释(图 2)。图 2:你的观点是哪种? 根据你自己的认识,通过这个流程图来看看你的想法符合量 子力学四种诠释中的哪个吧。首先,科学哲学家对实在本身便有根本的分歧。被称为实在 论者的一方认为客观实体的存在与我们的认知无关,一个对 象,就算我们不去观察它,它也是“存在着的

12、”。而另一边的 反实在论者认为,只有我们观察着的对象才可以说是自然存 在的;他们认为物理学的唯一任务就是确保理论和观测一致。 这就是量子力学正统学派的观点 (它又被叫做“闷头只管计算” 学派,据说这话是美国理论家理查德费曼说的),认为讨论 实体态是毫无意义的。这一点为许多量子力学的先驱所推崇, 尤其是丹麦物理学家尼尔斯玻尔。但这一观点在今天的科学 哲学家中已渐渐退出主流,其部分原因在于它似乎是不可能 被证伪的。这样,持认知观点的人有两个选择:像爱因斯坦那样坚持实 在论,或者像玻尔那样否定它。但那些持实体观点的人(自 然,他们都是实在论者) 也有两个选择。 其一已经有所暗示: 那就是认为波函数对

13、应所有的实在。基于这一观点的最著名 的例子是由美国物理学家休埃弗里特于 1957年首次提出的 量子力学“多世界”诠释。这一观点认为所有可能发生的物理 过程的结果会在无数不同的宇宙中出现。另一个实体观点就方便多了。其支持者认为波函数对应于某 种物质性的波,而波只是实在的一部分。持这一观点的一个 流行理论是玻姆力学,它是以美国物理学家大卫玻姆的名字 命名的。 在玻姆力学中, 实在包括波和粒子, 波是控制或“引 导”粒子运动的。所以在这一情形下, 只有波函数还不对应实 在,它是实体态的一个“物理量”,而实体态还包括粒子的运 动。这样一共就有四种观点,即:实在论毫无意义,而波函数就 是对观测的很好描述

14、(玻尔) ;实在是存在的,波函数是关 于它的不完全描述(爱因斯坦) ;波函数对应实在的一部分 (玻姆);波函数对应全部实在(埃弗里特) 。到目前为止, 除了第二、三点似乎比较相近,它们看上去似乎都没什么问 题。那么,爱因斯坦式的表示实在部分内容的波函数和玻姆 式的作为部分(而非全部)实在的波函数之间的区别是什么 呢?通俗点说,后一个波函数对应于某种物质性的事物,而 前者没有。但这两个观点在数学上的差别则很微妙。在最初 的认知定义中,书1涉及几个实体态 入1、入2、等3,但这对 玻姆力学(其波函数是实在的一部分)里的书1也是对的。这里,书1可以完全表示玻姆的“引导波”,但对体系的完整描 述还是需

15、要诸如“粒子位置参量”之类的信息。能量实在2010年,英国剑桥大学的数学物理学家罗伯特司柏肯( Robert Spekkens ,现在在加拿大滑铁卢市的圆周理论物理研究所)和伦敦帝国学院的尼古拉斯哈里根(NicholasHarrigan ,现在是一名教师兼科学评论家,住在曼切斯特) 提出了看待这个问题的新方法。按照他们的说法,我们来回 顾一下沿一维运动的经典粒子的例子。如前所述,任意时刻 它的实体态都可以由它的位置和动量完全确定。但现在我们 来考察它的能量。这个粒子可以停留在很多(也许是无限) 不同的实体态上,如 (x1,p1) 、(x2,p2) 、(x3,p3) 等,而具有相 同的能量 E1

16、 。或者反过来说, 能量 E1 不一定就只对应一个 实体态。这说明只有能量(就像爱因斯坦的认知波函数和玻 姆的“部分实在”波函数那样)不能完全确定实在。 不过,先不管这些不足,我们知道,物体总是“有”能量的, 它就像玻姆的波函数那样,确实是实在的一部分。为什么这 么说呢?司柏肯和哈里根称:秘密就在于,虽然一个能量对 应了许多种实体态, 但一个实体态 (位置和动量的单值数对) 只对应一个能量。 换句话说, 不会有两个数值不同的能量 E1 和 E2 对应于同一对位置和动量 (x1,p1) 。(例如, 考察挂在一 根弹簧上的物体的能量, 如果把它的质量和弹簧常数设为 1, 那么能量就可以写成 E=

17、1/2(p2+x2) )如果有两个能量值对 应于同一对位置和动量,那么能量就不是一个物理量,它就 不会是实在的一部分。 司柏肯和哈里根的定义很简洁,而且是第一次给出了一种精 确的方式来区分实体和认知实在论者的观点。如果单个实体 态入1也只对应于一个波函数 书1,那么波函数至少一定是实在的一部分,也一定对应于某种物质性的波。这样,实体观 点(不论玻姆式或埃弗里特式)就一定是对的。另一方面, 如果一个实体态 入1有时会对应两个或更多波函数书1、书2等,那么波函数一定就只表示实在的部分内容,这样爱因斯 坦的认知观点就是对的。对未知的证明 既然实体观和认知观之间存在一个根本的区别,这就说明一 定有办法

18、证明它们中的哪一个是对的。也许有人可以证明在 某种情形下单个实体态会对应至少两个不同的波函数,这就 可以证明玻姆和埃弗里特是错的,而大家则会站到爱因斯坦 一边,或放弃实在论。去年,伦敦帝国学院的物理学家特里鲁道夫(Terry Rudolph )和马休普西(Matthew Pusey ),以及伦敦大学皇家霍洛威 学院的数学家乔纳森巴雷特(Jonathan Barrett )共同接手 了这一挑战。他们发展了一个理论,来验证认知和实体这两 种实在论中哪一种与量子力学的预测相容。他们的证明多少 有些复杂,但我们可以通过一个思维实验简单地对其做一个 了解。想象有这样一种掷骰机,它会用两种特殊的方式掷出一

19、个普 通的六面骰子,至于会用哪种方式则取决于其上两个的按钮 中哪个被摁下。摁下标有“偶”(偶数)的按钮,机器就会保 证掷出三个偶数点数之一, 即二、 四或六。 摁下标有“质”(质数)的按钮,机器就会保证掷出三个质数点数之一,即二、 三或五。 实验的下一步就是放置两台这样的机器,调整好位置使它们 能够同时将骰子掷入一个测量盒中。测量盒上有四盏灯,代 表偶数和质数的四种组合:“非偶偶”、“非偶质”、“非质偶”、“非质质”(图3a )。这些灯一开始是红的,但一旦骰子进入 盒内并被测量,对应相应结果的灯就会变绿。图 3 :掷出实在 在普西、巴雷特和鲁道夫的思维实验中,两台掷骰机分别将 一个骰子以两种状

20、态之一掷入测量盒中。在(a)图中,骰子被掷出经典的偶数或质数态。在( b)图中,骰子掷出的 是量子态 书1或书2。我们提出的问题是, 测量盒是否总能亮 起一盏绿灯?如果不能,那么最开始的骰子态必然是认知性 的。但如果测量盒总能够保证亮起一盏绿灯,那么那些态就 是实体的,必然对应于至少一部分实在。鲁道夫、普西和巴雷特提出一个相当简明的问题:测量盒是 否总会有至少一盏灯变绿?初看答案似乎是肯定的。比如, 如果机器掷出六和五, 测量盒就会分析出六只能是被摁了“偶” 按钮的机器掷出,而五只会是被摁了“质”按钮的机器掷出: 按钮组合一定是“偶质”。因此, “非偶质”仍然是红的,而其它 三盏灯(也即“非偶

21、偶”、“非质偶”和“非质质”)会变绿。如果机器掷出二和五,情况就更复杂些,因为“二”可能是被“偶” 或“质”掷出的,偶质和质质的按钮组合都可以得到这一结果。 不过,测量盒仍会有两盏绿灯, 即“非偶偶”和“非质偶”那。么, 这么看似乎测量盒确实总会有至少一盏绿灯是亮的。 但如果机器掷出了两个二呢?现在测量盒就陷入困难了。两 个二都可以来自“偶”或“质”按钮我,们不能排除任何一种组合 也就是说,没有一盏灯能变绿。实际上,这一特殊情况 证明了“偶”和“质”按钮是认知态因,为按照司柏肯和哈里根的 定义,它们有时对应于同一个实体态:二。 现在我们将骰子换成量子版的。这次机器就不是掷出偶数或 质数了,而是

22、把量子骰子“掷到”两个波函数 书1和书2之一。 相应地,测量盒的结果变为“非书仇1”“非书1书2”“非书2书1 和“非书2书2”(图3b )。不过问题还是一样: 测量盒能否至少 亮起一盏绿灯?如果存在一种情形使之不能,即四盏灯都保 持红色,那么它将证明至少有一台机器像在经典版本中那样 将骰子掷到一个既可以对应于书1又可以对应于 书2的实体态或“数(”上就像“二(的实体态既可以对应偶数也可以对应质 数那样)。在这样的情况下,物理学家就不知道这个神秘的 实体态数字是多少了,但他们知道它起码是存在的,而这就 足以证明波函数是认知的了。但令人惊讶的是:量子力学预 言这种情形是不可能出现的”请参见后面“

23、量子版掷骰实验(节)。它预言说不论我们怎么选择波函数对书1和书2,测 量盒都会亮起一盏绿灯。你好,实在 普西、巴雷特和鲁道夫的定理现在被称为 PBR 定理,它本 质上像是一道最后通牒。如果量子力学是正确的,那么波函 数就不会是认知的:它不仅仅是表示实验者对实在的部分认 识,它一定是实体的,并且直接对应于部分(玻姆式的)或 全部(埃弗里特式的)实在。当然,量子力学也可能是错误的。实际上,研究者们也准备 了一个实验计划来检验根据上述三人的理论做出的特定的 量子力学预测。不过,你必须要有特别开放的想法才会把赌 押在认知的结果(即存在某个情形使得没有一盏绿灯亮着) 上。在整个量子力学史中,量子力学的预

24、测还从未出过错。 认知预测与量子力学预测不符这一事实暗示了波函数至少 对应于一部分实在,或者说对应着某种物质性的波。爱因斯 坦说过一句名言,即上帝“不掷骰子”,然而,这次骰子坑了 他。面对这一事实,爱因斯坦的追随者们剩下三个选择(请再次 参见图 2):如果他们仍要将波函数视为是认知的, 那么他们 简直就是抛弃了科学实在论:虽然其中很多人也认为这是一 个重大的牺牲。这样,要保持实在论就只剩下两个观点了。 一个观点认为波函数是实在的一部分,就像玻姆力学中波引 导粒子运动那样。另一个观点认为波函数就是全部实在,就像埃弗里特的量子力学“多世界”诠释那样。英国牛津大学的物理哲学家大卫华莱士( David

25、 Wallace ) 是多世界诠释的支持者。他相信 PER 定理是他职业生涯(他 现年 36 岁)中出现的关于量子力学基础最重要的结论。他 说:“从那些希望埃弗里特诠释是真的的人的角度看, 这是一 个好消息。不过,作为一个讲道德的人,我未必希望埃弗里 特的诠释是对的;我想知道事实是怎么一回事。 ”华莱士指出, 现在已经有很好的理由怀疑认知观点。他说,理由之一是粒 子可以与另一个粒子发生干涉这一实验证据。这种干涉完全 是波的性质,它说明波函数不仅仅是实在的一部分内容。 但这还不是爱因斯坦式观点的终结。 PBR 定理依赖于某些假 设,其中最重要的一点是:独立构建的体系具有独立的物理 状态。量子力学

26、理论家及哲学家现在可以对这些假设提出异 议了,但这个过程想必并不简单。 华莱士说: “如果始终没有 人能够提出一个回避 PBR 假设的理论,那我可就要大跌眼 镜了。这条路的结果会如何,我不知道,但我现在看到的东 西让我略感绝望。” 不过,量子力学已经迫使物理学家放弃了很多有关自然的坚 信不疑的假设。让爱因斯坦持认知观点的原因之一是,量子 力学有这样一个推论:量子力学可以同时引发两个相距很远 的体系的变化。这一现象被爱因斯坦称为“鬼魅超距行为”。他的这一反对被北爱尔兰物理学家约翰贝尔(John Bell )1964 年发表的一条定理挫败了,这条定理证明了任何关于 自然的理论,不论认知与否,都必须

27、是非定域的。译注:其实这里作者说得夸张了一点。贝尔当时提出的并不算是定理, 而是一条判据,称为贝尔不等式。如果不等式成立,则物理 理论就应该是定域实在的,反之则不是。后来的实验证明了 不等式不成立。 虽然鲁道夫的证明支持实体诠释,他本人却是认知诠释的支 持者。他相信一定有超越波函数的物理机制,但他对这一点 也仅限于假设。他说:“我们所说的东西一定程度上都与空间 和时间相关,虽然这样听上去似乎显得很抽象。我准备了这 个,然后去测量那个,就是这样。所以,尽管空间和时间的 出现显得毫不违和,但我认为我们终将会知道,空间和时间 只不过是我们这群灵长类动物造出来方便使用的概念,宇宙 万物实际的运行才不会去管什么空间和时间呢。” 量子版掷骰实验各矢量关系简图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论