版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、SAT数学真题精选1. If 2 x + 3 = 9, what is the value of 4 x 3 ?(A) 5 (B) 9 (C) 15 (D) 18 (E) 212. If 4(t + u) + 3 = 19, then t + u = ?(A) 3 (B) 4 (C) 5 (D) 6 (E) 73. In the xy-coordinate (坐标) plane above, the line contains the points (0,0) and (1,2). If line M (not shown) contains the point (0,0) and is pe
2、rpendicular (垂直) to L, what is an equation of M?(A) y = -1/2 x (B) y = -1/2 x + 1 (C) y = - x (D) y = - x + 2 (E) y = -2x4. If K is divisible by 2,3, and 15, which of the following is also divisible by these numbers?(A) K + 5 (B) K + 15 (C) K + 20 (D) K + 30 (E) K + 455. There are 8 sections of seat
3、s in an auditorium. Each section contains at least 150 seats but not more than 200 seats. Which of the following could be the number of seats in this auditorium?(A) 800 (B) 1,000 (C) 1,100 (D) 1,300 (E) 1,7006. If rsuv = 1 and rsum = 0, which of the following must be true?(A) r 1 (B) s 1 (C) u= 2 (D
4、) r = 0 (E) m = 07. The least integer of a set of consecutive integers (连续整数) is 126. if the sum of these integers is 127, how many integers are in this set?(A) 126 (B) 127 (C) 252 (D) 253 (E) 2548. A special lottery is to be held to select the student who will live in the only deluxe room in a dorm
5、itory. There are 200 seniors, 300 juniors, and 400 sophomores who applied. Each seniors name is placed in the lottery 3 times; each juniors name, 2 time; and each sophomores name, 1 times. If a students name is chosen at random from the names in the lottery, what is the probability that a seniors na
6、me will be chosen?(A)1/8 (B) 2/9 (C) 2/7 (D) 3/8 (E) 1/2Question #1: 50% of US college students live on campus. Out of all students living on campus, 40% are graduate students. What percentage of US students are graduate students living on campus?(A) 90% (B) 5% (C) 40% (D) 20% (E) 25%Question #2: In
7、 the figure below, MN is parallel with BC and AM/AB = 2/3. What is the ratio between the area of triangle AMN and the area of triangle ABC?(A) 5/9 (B) 2/3 (C) 4/9 (D) 1/2 (E) 2/9Question #3: If a2 + 3 is divisible by 7, which of the following values can be a?(A)7 (B)8 (C)9 (D)11 (E)4Question #4: Wha
8、t is the value of b, if x = 2 is a solution of equation x2 - b x + 1 = 0?(A)1/2 (B)-1/2 (C)5/2 (D)-5/2 (E)2Question #5: Which value of x satisfies the inequality | 2x | 2 and n 2, how many (m, n) pairs satisfy the inequality mn 100?(A)2 (B)3 (C)4 (D)5 (E)7Question #7: The US deer population increase
9、 is 50% every 20 years. How may times larger will the deer population be in 60 years ?(A)2.275 (B)3.250 (C)2.250 (D)3.375 (E)2.500Question #8: Find the value of x if x + y = 13 and x - y = 5.(A)2 (B)3 (C)6 (D)9 (E)4Question #9: USUKMedals32gold14silver41bronzeThe number of medals won at a track and
10、field championship is shown in the table above. What is the percentage of bronze medals won by UK out of all medals won by the 2 teams?(A)20% (B)6.66% (C)26.6% (D)33.3% (E)10%Question #10: The edges of a cube are each 4 inches long. What is the surface area, in square inches, of this cube? (A)66 (B)
11、60 (C)76 (D)96 (E)65 Question #1: The sum of the two solutions of the quadratic equation f(x) = 0 is equal to 1 and the product of the solutions is equal to -20. What are the solutions of the equation f(x) = 16 - x ?(a) x1 = 3 and x2 = -3 (b) x1 = 6 and x2 = -6(c) x1 = 5 and x2 = -4 (d) x1 = -5 and
12、x2 = 4(e) x1 = 6 and x2 = 0 Question #2: In the (x, y) coordinate plane, three lines have the equations:l1: y = ax + 1l2: y = bx + 2l3: y = cx + 3 Which of the following may be values of a, b and c, if line l3 is perpendicular to both lines l1 and l2?(a) a = -2, b = -2, c = .5 (b) a = -2, b = -2, c
13、= 2(c) a = -2, b = -2, c = -2 (d) a = -2, b = 2, c = .5(e) a = 2, b = -2, c = 2Question #3: The management team of a company has 250 men and 125 women. If 200 of the managers have a master degree, and 100 of the managers with the master degree are women, how many of the managers are men without a ma
14、ster degree? (a) 125 (b) 150 (c) 175 (d) 200 (e) 225Question #4: In the figure below, the area of square ABCD is equal to the sum of the areas of triangles ABE and DCE. If AB = 6, then CE = (a) 5 (b) 6 (c) 2 (d) 3 (e) 4Question #5:If and are the angles of the right triangle shown in the figure above
15、, then sin2 + sin2 is equal to:(a) cos() (b) sin() (c) 1 (d) cos2() (e) -1Question #6: The average of numbers (a + 9) and (a - 1) is equal to b, where a and b are integers. The product of the same two integers is equal to (b - 1)2. What is the value of a? (a) a = 9 (b) a = 1 (c) a = 0 (d) a = 5 (e)
16、a = 11Question #1: If f(x) = x and g(x) = x, x 0, what are the solutions of f(x) = g(x)? (A) x = 1 (B)x1 = 1, x2 = -1 (C)x1 = 1, x2 = 0 (D)x = 0(E)x = -1Question #2: What is the length of the arc AB in the figure below, if O is the center of the circle and triangle OAB is equilateral? The radius of
17、the circle is 9(a) (b) 2 (c) 3 (d) 4 (e) /2Question #3: What is the probability that someone that throws 2 dice gets a 5 and a 6? Each dice has sides numbered from 1 to 6. (a)1/2 (b)1/6 (c)1/12 (d)1/18 (e)1/36Question #4: A cyclist bikes from town A to town B and back to town A in 3 hours. He bikes
18、from A to B at a speed of 15 miles/hour while his return speed is 10 miles/hour. What is the distance between the 2 towns? (a)11 miles (b)18 miles (c)15 miles (d)12 miles (e)10 milesQuestion #5: The volume of a cube-shaped glass C1 of edge a is equal to half the volume of a cylinder-shaped glass C2.
19、 The radius of C2 is equal to the edge of C1. What is the height of C2? (a)2a / (b)a / (c)a / (2) (d)a / (e)a + Question #6: How many integers x are there such that 2x 5 must be true in which one of the following cases? I. x 7 III. x 01. Three unit circles are arranged so that each touches the other
20、 two. Find the radii of the two circles which touch all three.2. Find all real numbers x such that x + 1 = |x + 3| - |x - 1|.3. (1) Given x = (1 + 1/n)n, y = (1 + 1/n)n+1, show that xy = yx. (2) Show that 12 - 22 + 32 - 42 + . + (-1)n+1n2 = (-1)n+1(1 + 2 + . + n). 4. All coefficients of the polynomi
21、al p(x) are non-negative and none exceed p(0). If p(x) has degree n, show that the coefficient of xn+1 in p(x)2 is at most p(1)2/2. 5. What is the maximum possible value for the sum of the absolute values of the differences between each pair of n non-negative real numbers which do not exceed 1?6. AB is a diameter of a circle. X is a point on the circle other than the midpoint of the arc AB. BX meets the tangent at A at P, and AX meets the tangent at B at Q. Show that the line PQ, the tangent at X and the
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 寓教于乐:2024年互动式《十万个为什么》课件亮相
- 《理想的翅膀》课件:探索2024年科技与教育的融合
- 《小青蛙找家》的教育价值与影响
- 2024年《先进制造技术》教案:跨学科整合与创新
- 2大青树下小学课件:2024年教学实践与案例分析
- 2023年高考物理二轮复习讲练测(新高考专用)专题31电场的性质(练)(原卷版+解析)
- 《猴子的烦恼》课件制作技巧:2024年新课程培训
- 2024年BIM技术在建筑翻新工程中的应用培训
- 《小青蛙找家》趣味教学法
- 2023年四川省内江市成考专升本高等数学二自考模拟考试(含答案带解析)
- 人教版(2024)七年级英语上册教学课件Unit 3 Lesson 6 Reading Plus
- 第4章 跨境电商选品与定价
- 中医科研思路
- 中医创新项目
- 《犯罪心理学(马皑第3版)》章后复习思考题及答案
- 青骄第二课堂2021年禁毒知识答题期末考试答案(初中组)
- 《中华人民共和国监察法》知识测试题库
- 《城市轨道交通桥梁养护技术规范》
- 《水土保持技术》课件-项目八 拦渣措施
- 机动车检测站违规检验整改报告
- 2024年建筑电工复审考试题库附答案
评论
0/150
提交评论