相似三角形的判定教学设计及反思_第1页
相似三角形的判定教学设计及反思_第2页
相似三角形的判定教学设计及反思_第3页
相似三角形的判定教学设计及反思_第4页
相似三角形的判定教学设计及反思_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品教学教案相似三角形的判定(1)【教学目标】1能说出三角形相似的判定定理1和直角三角形被斜边上的高分成两个直角三角形 和原三角形相似的重要结论;2、会用三角形相似的判定定理1和重要结论来证明有关问题;3、通过用三角形全等的判定方法类比得出三角形相似的判定方法,使学生进一步领 悟类比的思想方法。4、通过解题的引申练习,培养学生练习后反思的好习惯。【重点和难点】理解相似三角形的判定定理1和重要结论,并能用其来解决有关问题【教具】三角板、量角器、多媒体设备【教学设计】一、复习旧知识,运用类比的思想方法引导学生提出问题1、什么叫相似三角形?怎么表示?(在学生回答完后,教师总结)对应角相等,对应边成比

2、例的三角形 ,叫做相似三角形。(注意:三角形相似不一定限定在两个三角形之间,可以是两个以上,但不能是一 个。)表示:如果?ABC与?ABC相似,则记作?ABCs?ABC.AB AC BC用数学符号表示:V/ A= / A,/ B=/B,/ C=/ C,且上昌=竺=更, ?ABCS ?ABC.注意:与三角形全等的书写类似,表示对应角的字母顺序需要一样2、上节课我们还学习了一个判定两三角形相似的定理,哪位同学能说说?学生回答完之后投影:平行于三角形一边的直线和其他两边(或两边的延长线)相 交,所构成的三角形与原三角形相似.CC还有什么方法可判定两个三角形相AAS ”、“ ASA ”、“ SAS”、

3、3、除了用定义和上面的定理来判定三角形相似外, 似?我们知道判定两个三角形全等的方法有“SSS、“HL ”等,那么类似地,判定两个三角形相似还有哪些方法?今天我们开始来研 究这个问题。二、(新课)师生共同解决问题问题:如图(4)所示,在?ABC与?ABC中,若/ A= / A, / B=/B,试猜想:?ABC 与?ABC是否相似?并证明你猜的结论。C让学生思考讨论,从图形的外观,绝大多数学生会猜这两个三角形相似。 结论的证明 以教师讲授为主,并引导学生思考: 根据题设条件,难于用定义来证明,因为用定义来证 明需要的条件较多,所以不妨考虑用定理来证明。为此,需要构造出符合定理条件的图形: 在?A

4、BC中,作BC的平行线,且在?ABC中截得的三角形与?ABC又有着非常紧密的联 系(全等),这样师生共同分析,完成证明。教师把证明过程投影到屏幕。证明:在?ABC的边AB上截取AD=AB,过点 D 作 DE / BC ,交 AC于点E,则有?ADE S ?ABC.V/ ADE= / B,/ B= / B, / ADE= / B.又/ A= / A,AD=AB, ?ADE 也?ABC.C告诉学生,如图(5)、图(6)这样作辅助线也可以证明这个问题。 ?ABC s ?ABC.CC图(5)(投影)最后师生共同归纳,得出结论:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个

5、三角形相似.可简单说成:两角对应相等,两三角形相似.用数学符号表示这个定理:V/ A= / A,/ B=/?ABC s ?ABC.(让学生说,最后教师板书即投影) 对于三角形来说,有两个角对应相等意味着三个角都对应相等。三、应用举例,变式练习例 1 :已知:?ABC 和?DEF 中,/ A=40 ,/ B=80,/ E=80, / F=60,求证: ?ABC s ?DEF.让学生运用本节学习的定理自己证明,然后教师总结并且把证明过程投影到屏幕。 证明:V在?ABC 中,/ A=40,/ B=80 / C=180 - 40 - 80 =60 V在?DEF 中,/ E=80,/ F=60 / B=

6、/E,/ C=/ F课堂练习 ?ABCs?DEF (两角对应相等,两三角形相似). (投影)1判定下列三角形中哪些是相似的?哪些不是相似1、应用这节课学的判定定理例2:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 说明:在教师的引导下,先由学生自己作出图形,并写出已知、求证、证明 然后教师总结并给出解答参考:B?ABC S ?CBD s?ACD .V/ B=/B,/ CDB/ ACB=90, ?ABC s ?CBD(两角对应相等,两三角形相似). 同理?ABC s ?ACD . ?ABC s?CBDs?ACD .已知:如图(7),Rt?ABC中,CD是斜 边上的高.求证:证明:(最

7、后告诉学生,以后可以直接用例 2的结论来判定直角三角形相似.) 课堂练习(投影)2、判断题:)((1)两个顶角相等的等腰三角形是相似的三角形。(2)两个等腰直角三角形是相似三角形。(3)底角相等的两个等腰三角形是相似三角形。(4)两个直角三角形一定是相似三角形。(5)一个钝角三角形和一个锐角三角形有可能相似。()相似;如果都有一个(6) 有一个角相等的两个直角三角形是相似三角形。(7) 有一个锐角相等的两个直角三角形是相似三角形。(8) 三角形的三条中位线围成的三角形与原三角形相似。(9) 所有的正三角形都相似。(10) 两个等腰三角形只要有一个角对应相等就相似.3、填空:(填上“不”、“不一

8、定”或“一定”)两个等腰三角形都有一个角为45,这两个等腰三角形 角为95,这两个等腰三角形 目似.(提问:做完了就完了吗?然后引导学生在练习的过程中,养成反思的好习惯)*引申:(即反思)已知当两个等腰三角形都有一个角为 x时,这两个等腰三角形一定 相似,贝U x的取值范围是多少? ( 90 x 180或x=60)分析:两种情况,一种是当等腰三角形的底角和顶角相等时,这时为等边三角形,结论是x必为顶角的180之间0C显然的;第二种是这时x的取值要保证顶角和底角不出现相等的情况,这时 度数。因为等腰三角形的底角不可能90,而等腰三角形的顶角可为 的任意度数,所以只有当90 x 180时,才不至于

9、有顶 角和底角相等的情况(两个等腰三角形之间)。4、如右图,(1)若/ B=/ C,贝U ?ABE S ?;?DBO s ?.*(2)若/ B=/ C,且/仁/ A,则图中相似三角形共有对(因为这时出现4个三角形,它们之间任意两个都相似, 所以这个问题可以归为:在平面上有 4个点,在这4点任意则共有两点联线段,共有多少条线段?更一般地,如果有n个点的话, 1+2+(n-1)= n(n T)条)2(如还有时间,可再做几道练习)四、小结(教师可向学生提问:到目前为止,我们学习了哪些判定三角形相似的方法?然后师 生共同总结)到目前为止我们学习了判定三角形相似的方法有:ZA =SB =NB,NCAB AC BC 则人ABC MBC1、定义法 AB Ac BC2、平行于三角形一边的直线的定理. DE/ BC ?ADE s?ABC3、判定定理1V/ A= / A,/ B=/ B ?ABC s ?ABC4、直角三角形的一个重要结论:V/ ACB=90 ,CD丄 AB ?ABC s ?ACD s ?CBDB五、作业:课本P .238本节课主要是探究相似三角形的判定方法2,由于上节课已经学习了探究两个三角形相似的判定引例、判定方法1 ,而本节课内容在探究方法上又具教学反思有一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论