建筑英文文献及翻译_第1页
建筑英文文献及翻译_第2页
建筑英文文献及翻译_第3页
建筑英文文献及翻译_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、外文原文出处 :NATO Science for Peace and Security Series C: Environmental Security, 2009, Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data, Pages 147-149动力性能对建筑物的破坏引言: 建筑物在地震的作用下,和一些薄弱的建筑结构中,动力学性能扮演了一个很 重要的角色。特别是要满足最基本的震动周期,无论是在设计的新建筑,或者是评估已 经有的建筑,使他们可以了解地震的影响。许多标准(例如

2、:欧标, 2003;欧标, 2006),建议用简单的表达式来表达一个建筑 物的高度和他的基本周期。这样的表达式被牢记在心,得出标定设计(高尔和乔谱拉人,1997),从而人为的低估了标准周期。因为这个原因,他们通常提供比较低的设计标准 当与那些把设计基础标准牢记在心的人 (例:乔普拉本和高尔, 2000)。当后者从已进行 仔细建立的数字模型中得到数值 (例:克劳利普和皮诺, 2004;普里斯特利权威, 2007) 当数字估计与周围震动测量的实验结果相比较,有大的差异,提供非常低的周期标准 (例:纳瓦洛苏达权威, 2004)。一个概述不同的方式比较确切的结果刊登在马西和马里 奥(2008);另外,

3、一个高级的表达式来指定更有说服力的坚固建筑类型,提出了更加准 确的结构参数表 (建筑高度,开裂,空隙填实,等等 )。联系基础和上层建筑的震动周期可能发生共振的效果。这个原因对于他们的振动, 可能建筑物和土地在非线性运动下受到到破坏,这个必须被重视。通常,结构工程师和 岩土工程师有不同的观点在共振作用和一些变化的地震活动。 结构工程师们认为尽管建 筑物和土壤的自振周期和地震周期都非常的接近。但对于建筑物周期而言,到底是因为 结构还是非结构造成的破坏提出了疑问。如果加大振动,建筑物减轻自身的重量对共振 产生的破坏有很大的减轻效果。岩土工程的工程师们还没有完全同意这个观点,因为土 壤可以提高自身的振

4、动周期, 与建筑物有相同的振动周期, 从而建立了产生共振的条件。 这个问题的处理在于这个增加量到底是多少?一般来说这种答案是不可能的, 因为它取 决于建筑类型和土壤类型。例如,一些普通的混凝土建筑物,对这建筑物增加一个非常 大的震动周期,可以知道在平常的振动下就会迅速的遭到破坏,尤其是那些砌体建筑, 比如,马雪凯利建筑 (2004)和克劳福建筑 (2006)。最后,估计在改装或者加固后参数表数字的变化,通过计算机计算来改变标准的振 动周期,阻尼因数和振动波形。 这可以是一个非常好的评估工具对于存在的一些干扰 (法 拉斯等, 2008)。这种效果也可以作为一种诊断工具,对周围的振动测量很有帮助(

5、布丁和汉斯, 2008)。对以上问题的进一步研究,强烈要求建立更加宽广的原地实验或者是实验室实验, 得出实验结果来估算。用一个经济实用的方式,来营造动态特性。Role of Dynamic Properties on Building VulnerabilityNATO Science for Peace and Security Series C: Environmental Security, 2009, Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data, Pages

6、 147-149IntroductionDynamic properties have a major role on the seismic behavior and vulnerability of building structures. Particularly, fundamental periods of vibration are needed, both in design of new buildings and in assessment of existing ones, so that their seismic response can be evaluated.Se

7、veral codes (e.g. CEN, 2003; NZSEE, 2006) recommend empirical simplified expressions between the height of a building type and its fundamental period. Such expressions were calibrated keeping in mind a force-based design (Goel and Chopra, 1997), thus intentionally aim at underestimating period value

8、s. For this reason they usually provide rather low values when compared to those ones obtained keeping in mind a displacement-based design (see e.g. Chopra and Goel, 2000), also when the latter were obtained from numerical simulations performed on carefully set up models (see e.g. Crowley and Pinho,

9、 2004; Priestley et al., 2007). Even larger differences appear when numerical estimates are compared to experimental results based on ambient vibration measurements that provide very low period values (see e.g. Navarro et al., 2004). An overview of the different approaches together with a comparison

10、 of the relevant results is reported in Masi and Vona (2008); further, period-height expressions for some reinforced concrete building types are given, where the role of important structural characteristics (building height, cracking, masonry infills, elevation irregularities, etc.) is carefully tak

11、en into account.Coupling between soil and building fundamental periods of vibration may cause resonance effects. For this reason also their variation, as a consequence of possible building damage and/or soil non linear behavior during the motion, needs to be considered. Typically, structural and geo

12、technical engineers have different points of view about resonance effect and its variation during a seismic motion. Structural engineers say that whereas building and soil have initially close periods and an earthquake occurs, the building period, as a result of structural and non structural damage,

13、 is expected to increase during the motion, so that the building “ hides ” itself reducing the heaviest effects oafn rcees.o Gneotechnical engineers do not completely agree with this opinion saying that also the soil period can shift towards higher values, that is in the same direction of the buildi

14、ng one, thus the resonance condition could arise again. The question to be dealt with is: how much is the relative amount of that increase? A general answer is not possible, as it depends on building and soil type. For example, in case of reinforced concrete buildings with masonry infill, a very lar

15、ge increase of the building period can be expected with the level of shaking due to cracking of structural members and, particularly, of brittle masonry infill, see e.g. Mucciarelli et al. (2004), Calvi et al. (2006).Finally, estimating the variation of the dynamic characteristics after retrofitting

16、 or strengthening interventions, by computing the modified values of fundamental periods, damping factors and mode shapes, can be a practical tool to evaluate the effectiveness of the intervention (Farsi et al., 2008). To this purpose and also as a diagnosis tool, ambient vibration measurements can be very helpful (Boutin and Han

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论