下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1 /4因式分解知识点归纳总结概述定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫 作分解因式。分解因式与整式乘法互为逆变形。因式分解的方法:提公因式法、公式法、分组分解法和十字相乘法注意三原则1分解要彻底2最后结果只有小括号3最后结果中多项式首项系数为正(例如:-3xA2+x=-x(3x-1)分解因式技巧1分解因式与整式乘法是互为逆变形。2分解因式技巧掌握: 等式左边必须是多项式; 分解因式的结果必须是以乘积的形式表示; 每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; 分解因式必须分解到每个多项式因式都不能再分解为止。注:分解因式前先要找到公
2、因式,在确定公因式前,应从系数和因式两个方面考虑。基本方法提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因 式乘积的形式,这种分解因式的方法叫做提公因式法。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取 各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最 低的。2/4如果多项式的第一项是负的,一般要提出”号使括号内的第一项的系数成为正数提出 ”号时,多项式的各项都要变号。注意:把2aA2+1/2变成2(卅2+1/4)不叫提公因式提公因式法基本步骤:
3、(1)找出公因式;(2 )提公因式并确定另一个因式: 第一步找公因式可按照确定公因式的方法先确定系数在确定字母; 第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公 因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一 项,求的剩下的另一个因式; 提完公因式后,另一因式的项数与原多项式的项数相同。例女口: -am+bm+cm=a(x-y)+b(y-x)=公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a2 2ab+ b2 = (a b) 2注意:能运用完全平方公
4、式分解因式的多项式必须是三项式,其中有两项能写成两个数 (或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。例如:a2 +4ab+4b2 =分组分解法能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分 法。比女口: ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y)同样,这道题也可以这样做。ax+ay+bx+by=x(a+b)+y(a+b)=(a+b)(x+y)3/4几道例题:1.5ax+5bx+3ay+3by2. x3-x2+x-13. x?x产y十字相乘法这种方法有两种情况。 x2+(p+q)x+pq型的式子的因式分解这类二次三项式的
5、特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q) kx2+mx+n型的式子的因式分解女口果有 k=ac, n=bd,且有 ad+bc=m 时,那么 kx2+mx+n=(ax+b)(cx+d).所以 7x2-19x-6=(7x+2)(X-3).十字相乘法口诀:首尾分解,交叉相乘,求和凑中多项式因式分解的一般步骤: 如果多项式的各项有公因式,那么先提公因式; 如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; 如果用上述方法不能分解,那么可以尝试用分组来分解; 分解因式,必须进行到每一个多项式因式都不能再分解为止。也可以用一句话来概括:先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适4/4因式分解练习题(l)(m n)(p q) (n m)(pq)(5)xn 1 3xn 2xn 1(4)(3m 2n)2 (m n)2 x315x2y 16xy2-x 3x3(9)3(io) 3(x y)26(x y) 24(11)1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青年志愿者协会品牌推广方案
- 体育赛事餐饮运营方案
- 消防安全应急预案方案
- 电力方涵施工材料管理方案
- 工地承包免责协议书(2篇)
- 徐州2024年01版小学五年级上册英语第6单元期中试卷
- 2024年统编版小学四年级英语第3单元期末试卷
- 如何引导深度学习培养学生的思维品质
- 学校出资办理从业资格证协议书(2篇)
- 食品安全管理全过程跟踪审计方案
- 设备试机(验收)报告
- 石材厂设计方案范本
- 租赁机械设备施工方案
- GB/T 43153-2023居家养老上门服务基本规范
- 《中华商业文化》第四章
- 服务与服务意识培训课件
- 第5课《秋天的怀念》群文教学设计 统编版语文七年级上册
- 冬季安全生产特点及预防措施
- 视频短片制作合同范本
- 结构加固改造之整体结构加固教学课件
- 高中数学-3.3 幂函数教学课件设计
评论
0/150
提交评论