版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、本次设计主要研究的是 PID 控制技术在运动控制领域中的应用,纵所周知运动 控制系统最主要的控制对象是电机, 在不同的生产过程中, 电机的运行状态要满足生 产要求,其中电机速度的控制在占有至关重要的作用, 因此本次设计主要是利用 PID 控制技术对直流电机转速的控制。其设计思路为:以 AT89S51 单片机为控制核心, 产生占空比受 PID 算法控制的 PWM 脉冲实现对直流电机转速的控制。 同时利用光 电传感器将电机速度转换成脉冲频率反馈到单片机中, 构成转速闭环控制系统, 达到 转速无静差调节的目的。在系统中采 128W4LCD显示器作为显示部件,通过 4M 键盘设置 P、I、D、V 四个
2、参数和正反转控制,启动后通过显示部件了解电机当前 的转速和运行时间。因此该系统在硬件方面包括:电源模块、电机驱动模块、控制模 块、速度检测模块、人机交互模块。软件部分采用 C 语言进行程序设计,其优点为: 可移植性强、算法容易实现、修改及调试方便、易读等。本次设计系统的主要特点:(1 )优化的软件算法,智能化的自动控制,误差补偿;(2)使用光电传感器将电机转速转换为脉冲频率,比较精确的反映出电机的转 速,从而与设定值进行比较产生偏差,实现比例、积分、微分的控制,达到转速无静 差调节的目的;(3)使用光电耦合器将主电路和控制电路利用光隔开,使系统更加安全可靠;(4) 128 X64LCD显示模块
3、提供一个人机对话界面,并实时显示电机运行速度 和运行时间;( 5)利用 Proteus 软件进行系统整体仿真, 从而进一步验证电路和程序的正确 性,避免不必要的损失;( 6 )采用数字 PID 算法,利用软件实现控制, 具有更改灵活,节约硬件等优点;( 7)系统性能指标:超调量 8; 调节时间 4s; 转速误差 1r/min 。1 PID 算法及 PWM 控制技术简介1.1 PID 算法控制算法是微机化控制系统的一个重要组成部分, 整个系统的控制功能主要由控 制算法来实现。目前提出的控制算法有很多。根据偏差的比例( P)、积分(I)、微 分(D)进行的控制,称为PID控制。实际经验和理论分析都
4、表明, PID控制能够 满足相当多工业对象的控制要求,至今仍是一种应用最为广泛的控制算法之一。下面 分别介绍模拟PID、数字PID及其参数整定方法。1.1.1 模拟 PID在模拟控制系统中,调节器最常用的控制规律是PID控制,常规PID控制系统 原理框图如图1.1所示,系统由模拟PID调节器、执行机构及控制对象组成。图1.1模拟PID控制系统原理框图PID调节器是一种线性调节器,它根据给定值r(t)与实际输出值c(t)构成的控 制偏差:e(t) = r (t) c(t)(1.1)将偏差的比例、积分、微分通过线性组合构成控制量,对控制对象进行控制,故称为 PID调节器。在实际应用中,常根据对象的
5、特征和控制要求,将P、I、D基本控制规律进行适当组合,以达到对被控对象进行有效控制的目的。例如,P调节器,PI调节器,PID调节器等。模拟PID调节器的控制规律为1tde(t)、u(t) Kpe(t)e(t)dtTd(1.2)Ti0dt式中,Kp为比例系数,T|为积分时间常数,Td为微分时间常数。简单的说,PID调节器各校正环节的作用是:(1) 比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节器立即产生控制作用以减少偏差;(2) 积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决 于积分时间常数Ti,Ti越大,积分作用越弱,反之则越强;(3) 微分环节:能
6、反映偏差信号的变化趋势(变化速率),并能在偏差信号的 值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度, 减少调节时间。由式1.2可得,模拟PID调节器的传递函数为D(S)U(s)KP(1TiSTdS)(1.3)由于本设计主要采用数字 PID算法,所以对于模拟PID只做此简要介绍1.1.2 数字 PID在DDC系统中,用计算机取代了模拟器件,控制规律的实现是由计算机软件来 完成的。因此,系统中数字控制的设计,实际上是计算机算法的设计。由于计算机只能识别数字量,不能对连续的控制算式直接进行运算, 故在计算机 控制系统中,首先必须对控制规律进行离散化的算法设计。为将模拟P
7、ID控制规律按式(1.2)离散化,我们把图1.1中r(t)、e(t)、u(t)、c(t)在第n次采样的数据分别用r(n)、e(n)、u(n)、c(n)表示,于是式(1.1)变为:e(n) = r(n) c( n)(1.4)当采样周期T很小时dt可以用T近似代替,de(t)可用e(n) e(n 1)近似代替,“积 分”用“求和”近似代替,即可作如下近似de(t) e(n) e(n 1)dt0e(t)dtTne(i)Ti 1(1.5)(1.6)这样,式(1.2)便可离散化以下差分方程u(n)Kpe( n)e(n)i 1n) e(n 1) u(1.7)上式中U。是偏差为零时的初值,上式中的第一项起比
8、例控制作用,称为比例(P)项Up(n),即第二项起积分控制作用Up(n) Kpe(n),称为积分(I)项w(n)即5(n)KpTie(i)i 1第三项起微分控制作用,称为微分(D)项Ud(n)即UD(n)KpTdTe(n) e(n 1)(1.8)(1.9)(1.10)这三种作用可单独使用(微分作用般不单独使用)或合并使用,常用的组合有-P控制:u(n)up(n)Uo(1.11)PI控制:u(n)up( n)ui (n)u(1.12)PD控制:u(n)up(n)ud( n)uo(1.13)PID控制:u(n)up( n)ui(n)ud( n)uo(1.14)式(1.7)的输出量u(n)为全量输出
9、,它对于被控对象的执行机构每次采样时刻 应达到的位置。因此,式(1.7)又称为位置型PID算式。由(1.7)可看出,位置型控制算式不够方便,这是因为要累加偏差e(i),不仅要占用较多的存储单元,而且不便于编写程序,为此对式(1.7)进行改进。根据式(1.7)不难看出u(n-1)的表达式,即T n 1Tu(n 1) Kpe (n 1)e(n) De(n 1) e(n 2) uT| i 1T(1.15)将式(1.7)和式(1.15 )相减,即得数字PID增量型控制算式为u(n) u(n) u(n 1)Kpe(n) e(n 1) Qe(n) Ke(n) 2e(n 1) e(n 2)(1.16)从上式
10、可得数字PID位置型控制算式为u( n)KPe( n) e(n 1) Qe( n) Ke( n) 2e(n 1) e(n 2) u。(1.17)式中: Kp称为比例增益;ki kp T称为积分系数;11Kd Kp半称为微分系数1。数字PID位置型示意图和数字PID增量型示意图分别如图1.2和1.3所示:图1.2 数字PID位置型控制示意图图1.3数字PID增量型控制示意图1.1.3数字PID参数整定方法如何选择控制算法的参数,要根据具体过程的要求来考虑。一般来说,要求被控 过程是稳定的,能迅速和准确地跟踪给定值的变化,超调量小,在不同干扰下系统输出应能保持在给定值,操作变量不宜过大,在系统和环
11、境参数发生变化时控制应保持 稳定。显然,要同时满足上述各项要求是很困难的,必须根据具体过程的要求,满足 主要方面,并兼顾其它方面。PID调节器的参数整定方法有很多,但可归结为理论计算法和工程整定法两种。 用理论计算法设计调节器的前提是能获得被控对象准确的数学模型,这在工业过程中一般较难做到。因此,实际用得较多的还是工程整定法。 这种方法最大优点就是整定 参数时不依赖对象的数学模型,简单易行。当然,这是一种近似的方法,有时可能略 嫌粗糙,但相当适用,可解决一般实际问题。下面介绍两种常用的简易工程整定法。(1)扩充临界比例度法这种方法适用于有自平衡特性的被控对象。使用这种方法整定数字调节器参数 的
12、步骤是: 选择一个足够小的采样周期,具体地说就是选择采样周期为被控对象纯滞后时 间的十分之一以下。 用选定的采样周期使系统工作:工作时,去掉积分作用和微分作用,使调节器成为纯比例调节器,逐渐减小比例度(1/Kp )直至系统对阶跃输入的响应达到临界振荡状态,记下此时的临界比例度K及系统的临界振荡周期Tk。 选择控制度:所谓控制度就是以模拟调节器为基准,将DDC的控制效果与模2 /丄 拟调节器的控制效果相比较。控制效果的评价函数通常用误差平方面积 e (t)表示。 e (t) dt ddc控制度=厂(1.18) e (t)dt模拟实际应用中并不需要计算出两个误差平方面积,控制度仅表示控制效果的物理
13、 概念。通常,当控制度为1.05时,就可以认为DDC与模拟控制效果相当;当控制 度为2.0时,DDC比模拟控制效果差。 根据选定的控制度,查表1.1求得T、Kp、Td的值。表1.1 扩充临界比例度法整定参数控制度控制规律TKpTiTd1.05PI0.03 Tk0.53 k0.88 Tk1.05PID0.014 Tk0.63 k0.49 TK0.14 Tk1.20PI0.05 Tk0.49 k0.91 Tk1.20PID0.043 Tk0.047 K0.47 Tk0.16 Tk1.50PI0.14 Tk0.42 k0.99 Tk1.50PID0.09 Tk0.34 K0.43 TK0.20 Tk
14、2.00PI0.22 Tk0.36 k1.05 TK2.00PID0.16 Tk0.27 k0.40 TK0.22 Tk(2)经验法经验法是靠工作人员的经验及对工艺的熟悉程度,参考测量值跟踪与设定值曲 线,来调整P、I、D三者参数的大小的,具体操作可按以下口诀进行:参数整定找最佳,从小到大顺序查;先是比例后积分,最后再把微分加;曲线振荡很频繁,比例度盘要放大; 曲线漂浮绕大湾,比例度盘往小扳; 曲线偏离回复慢,积分时间往下降; 曲线波动周期长,积分时间再加长; 曲线振荡频率快,先把微分降下来; 动差大来波动慢,微分时间应加长。下面以PID调节器为例,具体说明经验法的整定步骤: 让调节器参数积分
15、系数Ki =0,实际微分系数Kd =0,控制系统投入闭环运行, 由小到大改变比例系数心,让扰动信号作阶跃变化,观察控制过程,直到获得满意 的控制过程为止。 取比例系数Kp为当前的值乘以0.83,由小到大增加积分系数K|,同样让扰动信号作阶跃变化,直至求得满意的控制过程 积分系数K保持不变,改变比例系数Kp ,观察控制过程有无改善,如有改善则继续调整,直到满意为止。否则,将原比例系数Kp增大一些,再调整积分系数Ki, 力求改善控制过程。如此反复试凑,直到找到满意的比例系数Kp和积分系数Ki为止。 引入适当的实际微分系数 Kd和实际微分时间Td,此时可适当增大比例系数 Kp和积分系数Ki。和前述步
16、骤相同,微分时间的整定也需反复调整,直到控制过 程满意为止。PID参数是根据控制对象的惯量来确定的。大惯量如:大烘房的温度控制,一 般P可在10以上在(3、10)之间,D在1左右。小惯量如:一个小电机闭环 控制,一般P在(1、10)之间在(0、5)之间,D在(0.1、1)之间,具体参 数要在现场调试时进行修正。1.2 PWM脉冲控制技术PWM (Pulse Width Modulation )控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。1.2.1 PWM控制的基本原理在采样控制理论中有一个重要的结论:冲量相等而形状不同的窄脉冲加
17、在具有惯性的环节上时,其效果基本相同。冲量即指窄脉冲的面积。这里所说的效果基本相同, 是指环节的输出响应波形基本相同。 如果把各输出波形用傅立叶变换分析, 则其低频 段非常接近,仅在高频段略有差异。例如图1.4中a、b、c所示的三个窄脉冲形状不同,其中图1.4的a为矩形脉冲,图1.4的b为三角脉冲,图1.4的c为正弦 半波脉冲,但它们的面积(即冲量)都等于 1,那么,当它们分别加在具有惯性的同 一环节上时,其输出响应基本相同。当窄脉冲变为如图1.4的d所示的单位脉冲函数(t)时,环节的响应即为该环节的脉冲过渡函数。f(t)f(t)f(t)f(t)图1.4 形状不同而冲量相同的各种窄脉冲图1.5
18、a的电路是一个具体的例子。图中e(t)为窄脉冲,其形状和面积分别如 图1.4的a、b、c、d所示,为电路的输入。该输入加在可以看成惯性环节的R-L电路上,设其电流i(t)为电路的输出。图1.5b给出了不同窄波时i(t)的响应波形。 从波形可以看出,在i(t)的上升段,脉冲形状不同时i(t)的形状也略有不同,但其 下降段几乎完全相同。脉冲越窄,各i(t)波形的差异也越小。如果周期性的施加上 述脉冲,则响应i(t)也是周期性的。用傅立叶级数分解后将可看出,各i(t)在低频段的特性非常接近,仅在高频段有所不同2i(t) Rab图1.5 冲量相同的各种窄脉冲的响应波形1.2.2直流电机的PWM控制技术
19、直流电动机具有优良的调速特性,调速平滑、方便,调速范围广,过载能力大, 能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;能满足生产过程 自动化系统各种不同的特殊运行要求,在许多需要调速或快速正反向的电力拖动系统 领域中得到了广泛的应用。直流电动机的转速调节主要有三种方法: 调节电枢供电的电压、减弱励磁磁通和 改变电枢回路电阻。针对三种调速方法,都有各自的特点,也存在一定的缺陷。例如 改变电枢回路电阻调速只能实现有级调速,减弱磁通虽然能够平滑调速,但这种方法 的调速范围不大,一般都是配合变压调速使用。所以在直流调速系统中,都是以变压 调速为主。其中,在变压调速系统中,大体上又可分为可
20、控整流式调速系统和直流 PWM调速系统两种。直流PWM调速系统与可控整流式调速系统相比有下列优点: 由于PWM调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直 流电流,低速特性好、稳速精度高、调速范围宽。同样,由于开关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,因 此主电路损耗小、装置效率高;直流电源采用不可控整流时,电网功率因数比相控整流器高。正因为直流PWM调速系统有以上优点,并且随着电力电子器件开关性能 的不断提高,直流脉宽调制(PWM )技术得到了飞速的发展。随着科学技术的迅猛发展传统的模拟和数字电路已被大规模集成电路所取代,这
21、就使得数字调制技术成为可能。目前,在该领域中大部分应用的是数字脉宽调制技术。 电动机调速系统采用微机实现数字化控制,是电气传动发展的主要方向之一。采用微 机控制后,整个调速系统实现全数字化,并且结构简单、可靠性高、操作维护方便,电动机稳态运转时转速精度可达到较高水平,静动态各项指标均能较好地满足工业生 产中高性能电气传动的要求。下面主要介绍直流电机PWM调速系统的算法实现。根据PWM 控制的基本原理可知,一段时间内加在惯性负载两端的 PWM脉 冲与相等时间内冲量相等的直流电加在负载上的电压等效,那么如果在短时间 T内 脉冲宽度为to,幅值为U,由图1.6可求得此时间内脉冲的等效直流电压为:图1
22、.6 PWM脉冲t0 UtoUo 厂,若令 t,即为占空比,则上式可化为:Uo U(U为脉冲幅值)(1.19)若PWM脉冲为如图1.7所示周期性矩形脉冲,那么与此脉冲等效的直流电压的计算方法与上述相同,即Uont。UnTto UTU ( 为矩形脉冲占空比)(1.2O)O to T 2to 2T 3to 3T4tonT (n+1)t o t图1.7周期性PWM矩形脉冲由式1.20可知,要改变等效直流电压的大小,可以通过改变脉冲幅值U和占空比 来实现,因为在实际系统设计中脉冲幅值一般是恒定的,所以通常通过控制 占空比 的大小实现等效直流电压在 0U之间任意调节,从而达到利用PWM控 制技术实现对直
23、流电机转速进行调节的目的。2设计方案与论证2.1系统设计方案根据系统设计的任务和要求,设计系统方框图如图2.1所示。图中控制器模块为系统的核心部件,键盘和显示器用来实现人机交互功能, 其中通过键盘将需要设置 的参数和状态输入到单片机中,并且通过控制器显示到显示器上。在运行过程中控制 器产生PWM脉冲送到电机驱动电路中,经过放大后控制直流电机转速,同时利用 速度检测模块将当前转速反馈到控制器中,控制器经过数字PID运算后改变PWM 脉冲的占空比,实现电机转速实时控制的目的。图2.1 系统方案框图系统各模块采用的方案如下:(1)控制模块:采用AT89S51单片机;(2)电机驱动模块:采用直流电机驱
24、动芯片 L298N实现;(3)速度采集模块:采用光电传感器;(4)显示模块: 采用128 X64LCD液晶显示模块;(5)键盘模块:采用标准的4 X4矩阵式键盘;3单元电路设计3.1硬件资源分配本系统电路连接及硬件资源分配见图 3.1所示。采用AT89S51单片机作为核心器件,转速检测模块作为电机转速测量装置,通过 AT89S51的P3.3 口将电脉 冲信号送入单片机处理,L298作为直流电机的驱动模块,利用128 X64LCD显示 器和4 X4键盘作为人机接口。图3.1系统电路连接及硬件资源分配图3.2电源电路设计电源是整个系统的能量来源,它直接关系到系统能否运行。 至诵12V电源,而单片机
25、、显示模块等其它电路需要 5V 其最大输出电流为1.5A,rfn7805和7812两种稳压芯片,在本系统中直流电机的电源,因此电路中选用 能够满足系统的要求,其U4+5v电路如图3.2所示。图3.2电源电路3.3电机驱动电路设计驱动模块是控制器与执行器之间的桥梁,在本系统中单片机的I/O 口不能直接驱动电机,只有引入电机驱动模块才能保证电机按照控制要求运行,在这里选用 L298N电机驱动芯片驱动电机,该芯片是由四个大功率晶体管组成的H桥电路构成,四个晶体管分为两组,交替导通和截止,用单片机控制达林顿管使之工作在开关 状态,通过调整输入脉冲的占空比,调整电动机转速。其中输出脚( SENSEA和
26、SENSEB)用来连接电流检测电阻,Vss接逻辑控制的电源。Vs为电机驱动电源。 IN1-IN4输入引脚为标准TTL逻辑电平信号,用来控制H桥的开与关即实现电机 的正反转,ENA、ENB引脚则为使能控制端,用来输入PWM信号实现电机调速。 其电路如图3.3所示,利用两个光电耦合器将单片机的I/O与驱动电路进行隔离, 保证电路安全可靠。这样单片机产生的 PWM脉冲控制L298N的选通端,使电 机在PWM脉冲的控制下正常运行,其中四个二极管对芯片起保护作用。+5VP2.7图3.3 电机驱动电路JrT3.4电机速度采集电路设计在本系统中由于要将电机本次采样的速度与上次采样的速度进行比较,通过偏差进行
27、PID运算,因此速度采集电路是整个系统不可缺少的部分。本次设计中应用了 比较常见的光电测速方法来实现,其具体做法是将电机轴上固定一圆盘,且其边缘上有N个等分凹槽如图3.5 (a)所示,在圆盘的一侧固定一个发光二极管,其位置 对准凹槽处,在另一侧和发光二极光平行的位置上固定一光敏三极管,如果电动机转到凹槽处时,发光二极管通过缝隙将光照射到光敏三极管上,三极管导通,反之三极管截止,电路如图3.4( b)所示,从图中可以得出电机每转一圈在 P3.3的输出端 就会产生N个低电平。这样就可根据低电平的数量来计算电机此时转速了。例如当 电机以一定的转速运行时,P3.3将输出如图3.5所示的脉冲,若知道一段
28、时间t内 传感器输出的低脉冲数为n,则电机转速v=r/s。+5VR2竺 P3.33发光二极管圆盘光敏三极管(b)图3.4电机速度采集方案LTL图3.5传感器输出脉冲波形3.5显示电路设计因此在电路中加入显在系统运行过程中需要显示的数据比较都, 而且需要汉字显示,64S晶显示器比较适合,它是一种图形点阵液晶显示器,主要由行128 X 64全点阵液晶显示器组成,可完成汉字(16 X 16显根据设计要求要对系统各项参数和电机运行状态进行显示, 示模块是非常必要的 在这里选用128 X驱动器/列驱动器及示和图形显示共有20个引脚问,其引脚名称及引脚编号的对应关系如图3.6,引脚功能如表3.1所示。、k
29、aERSCBBDBDBDBeWroV?丿0|118|1|6|5| 彳 |1|2|1|0|9同7|6同4|3|2|1|表3.112864液晶显示模块引脚功能引脚符号引脚功能引脚符号引脚功能1VSS电源地15CS1CS1=1芯片选择左边64*64占八、2VDD电源正+5V16CS2CS2=1芯片选择右边64*64占八、3VO液晶显示驱动电源17/RST复位(低电平有效)4RSH :数据输入;L:指令码输入18VEELCD驱动负电源5R/WH :数据读取;L:数据写入19A背光电源(+)6E使能信号。20K背光电源(-)7-14DB0-DB7数据线有些型号的模块19、20脚为空脚128 X 64夜晶
30、显示器与单片机的连接电路如图 3.7所示:图3.7 显示模块电路图3.6键盘电路设计根据设计需求,本系统中使用了 4 X4键盘用以实现对P、I、D三个参数和电机正反转的设定,以及对电机启动、停止、暂停、继续的控制,其电路原理图如图4.8所示。图中L0L3为4 X4键盘的列信号,H0H3为4 X4键盘的行信号。在本系统中,用P1.0P1.3连接键盘的列信号L0L3;用P0.4P0.7连接键盘的行信号H0H3。按照要求设计操作面板如图3.8所示:L3图3.8 键盘模块键盘操作说明:在系统开始运行时,128 X64LCD将显示开机界面,若按下设 置键显示屏进入参数设置界面,此时按 1、2、3、4进入
31、相应参数的设置的状态, 输入相应的数字即可完成该参数的设置,待所有量设置完成后按正/反控制键设置正反转,最后按启动键启动系统,在运行过程中可按下相应键对电机进行暂停、继续、 停止运行的控制。图4.2测速程序流程4软件设计4.1算法实现4.1.1 PID 算法本系统设计的核心算法为 PID算法,它根据本次 采样的数据与设定值进行比较得出偏差 e(n),对偏差进 行P、I、D运算最终利用运算结果控制 PWM脉冲的 占空比来实现对加在电机两端电压的调节10,进而控制 电机转速。其运算公式为:u(n)KPe(n) e(n 1) KIe(n) KDe(n)2e(n 1) e(n 2) u0因此要想实现P
32、ID控制在单片机就必须存在上述算法, 其程序流程如图4.1所示。4.1.2电机速度采集算法本系统中电机速度采集是一个非常重要的部分,它 的精度直接影响到整个控制的精度。在设计中采用了光 电传感器做为测速装置,其计算公式为:nv=60 r/minN t图4.1PID程序流程从这里可以看出速度 v的误差主要是由圆盘边缘上的凹槽数的多少决定的,为了减 少系统误差应尽量提高凹槽的数量,在本次设计中取凹槽数N为120,采样时间t为0.5s,则速度计算具体程序流程如图 4.2所示。4.2程序流程4.2.1主流程图在一个完整的系统中,只有硬件部分是不能完成相应设计任务的, 所以在该系统 中软件部分是非常重要
33、的,按照要求和系统运行过程设计出主程序流程如图 4.3所 示。图4.3 主程序流程4.2.2键盘程序程序流程键盘中断程序是用来设在系统相应参数和控制系统进入相应的运行状态, 流程图如图4.4所示。其程序延时去抖动pi 口低四位置KEYL、KEYH 相与为 KEYKEY=OXEE ?读P1 口高四位数据到 KEYHKEY=0XED ?KEY=0XEB ?KEY=0XE7 ?KEY=0XDE ?KEY=0XDB ?KEY=0XD7 ?KEY=0XBE ?KEY=0XBD ?KEY=0XB7 ?KEY=0X7E ?KEY=0X77 ?pi 口高四位置YT NY+ NY+ NY NY” NYKEY=O
34、XDD ? NYt NY” NY NY NKEY=OXBB ? NY NYt NYKEY=0X7D ?YKEY=0X7B ? NYN* N读P1 口低四位数据到 KEYL数字键0数字键1数字键2数字键3数字键4* 数字键 5数字键6数字键7* 数字键 8数字键9* 正/反功能键* 暂停功能键* 继续功能键* 启动功能键*停止功能键*设置功能键图4.4 键盘程序流程4.2.3定时程序流程在本系统中定时器 TO中断子程序是用来控制电机运行时间和进行速度计算和PID运算,其程序流程如图4.5所示。图4.5 定时程序流程4.2.4显示程序流程显示模块是实现人机对话的重要部分,在这里选用128 X64L
35、CD显示器可实现 对汉字和字符的显示,该显示器的引脚功能在上面已经做了说明,下面介绍128 X64LCD的相关指令。(1)读取状态字D/IR/WDB7DB6DB5DB4DB3DB2DB1DB001BUSY0ON /RST0000OFF当R/W=1 ,D/I=O时,在E信号为高的作用下,状态分别输出到数据总线上。 状态字是了解模块当前工作状态的唯一的信息渠道,在每次对模块操作之前,都要读出状态字判断BUSY是否为“0”若不为“0 ”则计算机需要等待,直至BUSY =0 为止。(2)显示开关设置D/IR/WDB7DB6DB5DB4DB3DB2DB1DB0000011111DD=1 :开显示;D=0
36、关显示(3)显示起始行设置D/IR/WDB7DB6DB5DB4DB3DB2DB1DB00011显示起始行(063 )指令表中DB5DB0为显示起始行的地址,取值在 03FH (164行) 范围内,它规定了显示屏上最顶一行所对应的显示存储器的行地址。(4)页面地址设置D/IR/WDB7DB6DB5DB4DB3DB2DB1DB00010111Page (07 )页面地址是DDRAM 的行地址。8行为一页,DDRAM 共64行即8页,DB2-DB0 表示 0-7 页。(5)列地址设置D/IR/WDB7DB6DB5DB4DB3DB2DB1DB00001Yaddress (063 )列地址是DDRAM
37、的列地址。共64列,DB5-DB0取不同值得到0-3FH(1-64 ),代表某一页面上的某一单元地址,列地址计数器在每一次读/写数据后它将自动加一。(6)写显示数据D/IR/WDB7DB6DB5DB4DB3DB2DB1DB010显示数据该操作将8位数据写入先前已确定的显示存储器的单元内。操作完成后列地址计数器自动加一。(7)读显示数据D/IR/WDB7DB6DB5DB4DB3DB2DB1DB011显示数据该操作将12864模块中的DDRAM 存储器对应单位中的内容读出,然后列地 址计数器自动加一。根据上面指令结合系统要实行的功能,其显示子程序流程如图4.6所示初始化循环次数Yj = 2 ?N设
38、置显示起始页、起始列j=j+1;i=0循环次数j = 2 ?N初始化j=j+1;i=0设置显示起始 页、起始列RETI写入数据字节数i = 8?调用写入数调用写入数据子程序据子程序i=i+11Fi=i+1RETINa)写入16*16汉字程序流程b)写入8*16数字丫写入数据字、节数i = 16?+ N图4.6 显示程序流程4.3系统Proteus仿真4.3.1 Proteus软件简介Proteus是英国Labcenter electronics公司研发的EDA设计软件,是一个基于ProSPICE混合模型仿真器的,完整的嵌入式系统软、硬件设计仿真平台。Proteus不仅可以做数字电路、模拟电路、
39、数模混合电路的仿真,还可进行多种CPU 的仿真,涵盖了 51、PIC、AVR、HC11、ARM等处理器,真正实现了在计算机从原理设计、电路分析、系统仿真、测试到PCB板完整的电子设计,实现了从概念到产品的全过程。以下为本系统在 Protues中的仿真流程:(1) 新建文件:打开Protues点File,在弹出的下拉菜单中选择 New Design , 在弹出的图幅选择对话框中选 Default o(2) 设置编辑环境:按上述的方法对 Protues的设计环境进行设置。(3) 元器件选取:按设计要求,在对象选择窗口中点P,弹出Pickdevices 对话框,在Keywords中填写要选择的元 器
40、件,然后在右边对话框中选中要选的元 器件,则元器件列在对象选择的窗口中如 图4.7所示。本设计所需选用的元器件如下: AT89C51 :单片机 RES、RX8、RESPACK-8:电阻、排阻、上拉电阻1 C色叭乐庞寻E 徵”虽 Pick VcvlcbsBcatoiliTDBITS11 iqr f | LjhM、IV: lirJird1H-P : -l?山缺LsMt?DpOCK!3ll 匚匸InBD6I BUS图4.7 Proteus元器件选取界面II所示的系统整体电路,最后进 CRY STAL:晶振 CAP、CAP-ELEC:电容、电解电容 7805、7812:5V、12V三端稳压块 IN40
41、07 :二极管 AMPIRE128 64 :液晶显示器 OPTOCUPLER-NPN :光电耦合器 BOUTTON :按键 MOTOR-ENCODER :直流电机放置元器件、放置电源和地、连线,得到附录 行电气检测。(4)程序编译点菜单 Source Add/Remove sou rce Files ”在出现的对话框如 图4.8中,选择ASEM51编辑器,将上 面的汇编源程序SEKED.ASM添加。再 点菜单Source Build ALL编译汇编 源程序,生成目标代码文件 SWLED.HEX(5 )程序加载图 4.8 程序添加界面在编辑环境左击单片机然后右击, 在弹出的对话框中将编译生成的
42、HEX 文件加 载到芯片中,设单片机的时钟工作频率为 12MHZ 。(6)电路仿真 点仿真按键,按照前面介绍的系统使用方法进行仿真。5 系统测试与分析为了确定系统与设计要求的符合程度, 需要进行系统测试与分析, 但是由于试验 调节的制约和时间的限制, 不能完成此次制作, 只能通过软件仿真进行验证, 在这里 使用的是英国的 Proteus 软件进行测试,有关改软件的使用在前面的章节已经介绍, 在这里不再重复。根据第 1 章 PID 参数整定方法的介绍与分析,对于本系统采用经验法进行参数整定,该方法调试的原则为:先是比例后积分,最后再把微分加;曲线振荡很频繁,比例度盘要放大;曲线漂浮绕大湾,比例度
43、盘往小扳;曲线偏离回复慢,积分时间往下降;曲线波动周期长,积分时间再加长;曲线振荡频率快,先把微分降下来;动差大来波动慢,微分时间应加长。下面以 PID 调节器为例,具体说明经验法的整定步骤: 让调节器参数积分系数 K I =0 ,实际微分系数 KD =0 ,控制系统投入闭环运 行,由小到大改变比例系数 KP ,让扰动信号作阶跃变化,观察控制过程,直到获得 满意的控制过程为止。 取比例系数 K P 为当前的值乘以 0.83 ,由小到大增加积分系数 K I ,同样让扰 动信号作阶跃变化,直至求得满意的控制过程。 积分系数 KI 保持不变,改变比例系数 KP ,观察控制过程有无改善, 如有改善 则
44、继续调整,直到满意为止。否则,将原比例系数Kp增大一些,再调整积分系数Ki , 力求改善控制过程。如此反复试凑,直到找到满意的比例系数Kp和积分系数Ki为止。 引入适当的实际微分系数 Kd和实际微分时间Td,此时可适当增大比例系数Kp和积分系数Ki。和前述步骤相同,微分时间的整定也需反复调整,直到控制过 程满意为止。PID参数是根据控制对象的惯量来确定的。大惯量如:大烘房的温度控制,一 般P可在10以上在(3、10)之间,D在1左右。小惯量如:一个小电机闭环 控制,一般P在(1、10)之间在(0、5)之间,D在(0.1、1)之间,具体参 数要在现场调试时进行修正。根据上诉方法,通过软件仿真系统
45、得出数据如表 5.1所示,通过观察得出该系 统比较合适的P、I、D三者的参数值为:Kp=2, K| =2.2, Kd =0.2。并且可以 反映表5.1测试数据表次数设定Kp设定K|设定Kd设定(r/min )超调量调节时间(S)误差122.20.21008 %41%232.20.210015 %52%342.20.210022 %115%412.20.21005 %63%502.20.21001 %126%621.10.21006 %82%7200.21002%159%823.30.21008 %51%924.40.21009 %72%1022.20.11008 %61%1122.201006
46、%55%1222.20.31007%51%1322.20.41006%74%出PID调节器各校正环节的作用是:(1)比例环节:Kp值的选取决定于系统的响应速度。增大Kp能提高响应速度, 减小稳态误差;但是,Kp值过大会产生较大的超调,甚至使系统不稳定减小 K p可 以减小超调,提高稳定性,但 Kp过小会减慢响应速度,延长调节时间;(2)积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数 TI , TI 越大,积分作用越弱,反之则越强;(3 )微分环节:能反映偏差信号的变化趋势(变化速率) ,并能在偏差信号的值 变得太大之前,在系统中引入一个有效的早期修正信号,从而加
47、快系统的动作速度, 减少调节时间。通过上诉的数据分析可知, 该系统完成了设计的任务及要求, 证实了设计方案的 可行性和设计方法的正确性。附录I部分源程序一、主程序:main( )zf=0;flag1=0;EA=1;IT0=1;EX0=1;count=0;en=0;en1=0;en2=0;U0=200;Un=0;cc=0;zanting=0;pwm1=0;pwm2=0;P1=0xF0;Init_lcd();/ 设置液晶显示器Clr_Scr();/ 清屏left();Disp_Chinese(0,0,dan);/ 单left();Disp_Chinese(0,16,pian); left();Di
48、sp_Chinese(0,32,ji); left();Disp_Chinese(0,48,de); right();Disp_Chinese(0,0,shu); right();Disp_Chinese(0,16,zi); right();Disp_Digit(0,32,dp); right();Disp_Chinese(0,40,di); right();Disp_Digit(0,56,dd);left();Disp_Chinese(3,16,dian); left();Disp_Chinese(3,32,ji); left();Disp_Chinese(3,48,tiao); right
49、();Disp_Chinese(3,0,shu0); right();Disp_Chinese(3,16,xi); right();Disp_Chinese(3,32,tong); left();Disp_Chinese(6,48,heng); right();Disp_Chinese(6,0,heng); right();Disp_Chinese(6,16,jia);right();Disp_Chinese(6,32,xiao); right();Disp_Chinese(6,48,wei); flag0=0;for( ; ; ) if(flag0=1)break;Clr_Scr();lef
50、t();Disp_Chinese(0,32,can); left();Disp_Chinese(0,48,shu); right();Disp_Chinese(0,0,she); right();Disp_Chinese(0,16,zhi); left();Disp_Chinese(2,4,Kp); left();Disp_Digit(2,20,maohao);/ 片/ 机/ 的/ 数/ 字/ P/ I/D/ 电/ 机/ 调/ 速/ 系/ 统/ 横线 / 横线/ 等待设置键按下/ 清屏left();Disp_Digit(2,28,s0); left();Disp_Digit(2,36,s0);
51、 left();Disp_Digit(2,44,dian0); left();Disp_Digit(2,52,s0); right();Disp_Chinese(2,4,Ki); right();Disp_Digit(2,20,maohao); right();Disp_Digit(2,28,s0); right();Disp_Digit(2,36,s0); right();Disp_Digit(2,44,dian0); right();Disp_Digit(2,52,s0); left();Disp_Chinese(4,4,Kd); left();Disp_Digit(4,20,maohao); left();Disp_Digit(4,28,s0); left();Disp_Digit(4,36,s0); left();Disp_Digit(4,44,dian0); left();Disp_Digit(4,52,s0); right();Disp_Chinese(4,4,V); right();Disp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省泰州市姜堰区2023-2024学年四年级上学期期中英语试卷
- 消费者心理学与营销实战考核试卷
- 新能源企业文化与价值观建设考核试卷
- DB11∕T 3008.9-2018 人力资源服务规范 第9部分:人力资源管理咨询服务
- 宝鸡教研课件教学课件
- 淮阴工学院《计算机网络4》2023-2024学年期末试卷
- 淮阴工学院《机电系统建模与仿真1》2022-2023学年期末试卷
- 淮阴工学院《公共危机管理》2022-2023学年第一学期期末试卷
- 细菌类生物制品相关行业投资方案
- 光伏支架相关行业投资规划报告范本
- 2024年11月绍兴市2025届高三选考科目诊断性考试(一模) 化学试卷(含答案)
- 智能交通系统运行维护方案
- 2022年公务员国考《申论》真题(副省级)及参考答案
- 中国建筑行业现状深度调研与发展趋势分析报告(2022-2029年)
- 浙教版七年级上册科学12科学测量综合练习(答案)
- 中药融资方案
- 2023-2024学年四川省成都市九年级(上)期中物理试卷
- 2024年第四季度中国酒店市场景气调查报告-浩华
- 7.2共建美好集体(课件)2024-2025学年七年级道德与法治上册统编版
- 广东省东莞市2024-2025学年三年级上学期期中测试数学试卷
- 外研版英语初二上学期期中试题及答案指导(2024-2025学年)
评论
0/150
提交评论