潮流上机课程设计报告.华电_第1页
潮流上机课程设计报告.华电_第2页
潮流上机课程设计报告.华电_第3页
潮流上机课程设计报告.华电_第4页
潮流上机课程设计报告.华电_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、电力系统潮流上机课程设计报告院系班级:学号:学生姓名:指导教师:设计周数成绩:日期:年月日一、课程设计的目的与要求培养学生的电力系统潮流计算机编程能力,掌握计算机潮流计算的相关知识二、设计正文(详细内容见附录)1.手算: 要求应用牛顿-拉夫逊法或P-Q分解法手算求解,要求精度为0.001MW。节点1为平衡节点,电压,节点2为PQ节点,负荷功率,节点3是PV节点,两条支路分别为,对地支路。2.计算机计算:编写潮流计算程序,要求如下:2.1据给定的潮流计算任务书整理潮流计算的基础数据:节点的分类,线路模型,等值变压器模型,电压等级的归算,标幺值的计算;2.2基础数据的计算机存储:节点数据,支路数据

2、(包括变压器);2.3用牛顿-拉夫逊法计算;2.4根据所选潮流计算方法画流程图,划分出功能模块,有数据输入模块,导纳阵形成模块,解线性方程组模块,计算不平衡功率模块,形成雅可比矩阵模块,解修正方程模块,计算线路潮流,网损,PV节点无功功率和平衡节点功率,数据输出模块;2.5据上述模块编制程序并上机调试程序,得出潮流计算结果;2.6源程序及其程序中的符号说明集、程序流图简单系统如下图所示,支路数据如下:,节点数据如下:,1)节点导纳阵#include #include #include #include LF.h/form node conductance matrixintMakeY( int

3、nB, intnL, Line* sL, double* YG, double* YB )inti,j,l;double r,x,d1,g,b,t;for(i=0;inB;i+)for(j=0;jnB;j+)YGij=0.0;YBij=0.0;for(i=0;inL;i+)r=sLi.R;x=sLi.X;g=r/(r*r+x*x);b=-x/(r*r+x*x);switch(sLi.Type)case 1:/Linebreak;case 2:/Transformerg*=1/sLi.K;b*=1/sLi.K;break;YGsLi.NumIsLi.NumI+=g;YGsLi.NumJsLi.N

4、umJ+=g;YGsLi.NumIsLi.NumJ-=g;YGsLi.NumJsLi.NumI-=g;YBsLi.NumIsLi.NumI+=b+sLi.B;YBsLi.NumJsLi.NumJ+=b+sLi.B;YBsLi.NumIsLi.NumJ-=b;YBsLi.NumJsLi.NumI-=b;printf(实部:n);for(i=0;inB;i+)for(j=0;jnB;j+)printf(%lft,YGij);printf(n);printf(虚部:n);for(i=0;inB;i+)for(j=0;jnB;j+)printf(%lft,YBij);printf(n);/* Chec

5、k the Y matrix */ofstreamfout(out.txt);fout -Y Matrix- endl;for(i=0;inB;i+)for(j=0;jnB;j+)fout YGij +j YBij t;foutendl;fout.close();return 0;2)计算功率不平衡量#include #include #include #include LF.h/form delta p and delta qintCalDeltaPQ( intnpv, intnpq, Bus* bus, double* YG, double* YB, int* p_Jtobus, doub

6、le* deltaf )intk,i,j;for(k=0;knpv+npq*2;k+) i=p_Jtobusk;if(knpv) deltafk=busi.GenP-busi.LoadP;for(j=0;jnpv+npq+1;j+)deltafk-=busi.Volt*busj.Volt*(YGij*cos(busi.Phase-busj.Phase)+YBij*sin(busi.Phase-busj.Phase);printf(PV节点%d的有功功率是%lfn,i,deltafk);if(k=npv) deltafk=busi.GenP-busi.LoadP;for(j=0;jnpv+npq

7、+1;j+) deltafk-=busi.Volt*busj.Volt*(YGij*cos(busi.Phase-busj.Phase)+YBij*sin(busi.Phase-busj.Phase);printf(PQ节点%d的有功功率是%lfn,i,deltafk);if(k=npv+npq)deltafk=busi.GenQ-busi.LoadQ;for(j=0;jnpv+npq+1;j+) deltafk-=busi.Volt*busj.Volt*(YGij*sin(busi.Phase-busj.Phase)-YBij*cos(busi.Phase-busj.Phase);print

8、f(PQ节点%d的无功功率是 %lfn,i,deltafk);return 0;3)雅各比矩阵的计算/*Purpose: for undergraduate courseTask: Load FlowCopyright NCEPU, Liu Chongru*/#include #include #include #include LF.h/form Jacobian matrixintFormJacobian( intnpv, intnpq, Bus* bus, double* YG, double* YB, int* p_Jtobus, double* Jac )intnp = npv+np

9、q,j,k,i,m;/TODOdouble a14,q14;for(k=0;knpv+npq*2;k+) i=p_Jtobusk;ai=0; qi=0;if(knp)/H Nfor(j=0;jnp+1;j+)if(j!=i) ai+=busj.Volt*(YGij*sin(busi.Phase-busj.Phase)-YBij*cos(busi.Phase-busj.Phase); qi+=busj.Volt*(YGij*cos(busi.Phase-busj.Phase)+YBij*sin(busi.Phase-busj.Phase);for(m=0;mnpv+npq*2;m+)j=p_Jt

10、obusm;if(j!=i) if(mnp) Jackm=busi.Volt*busj.Volt*(YGij*sin(busi.Phase-busj.Phase)-YBij*cos(busi.Phase-busj.Phase);/Form H else Jackm=busi.Volt*busj.Volt*(YGij*cos(busi.Phase-busj.Phase)+YBij*sin(busi.Phase-busj.Phase);/Form Nelse if(j=i)if(mnp)Jackm=-busi.Volt*ai;/Form H else Jackm=busi.Volt*qi+2*bu

11、si.Volt*busi.Volt*YGij;/Form Nelsefor(j=0;jnp+1;j+)if(j!=i) ai+=busj.Volt*(YGij*sin(busi.Phase-busj.Phase)-YBij*cos(busi.Phase-busj.Phase); qi+=busj.Volt*(YGij*cos(busi.Phase-busj.Phase)+YBij*sin(busi.Phase-busj.Phase);for(m=0;mnpv+npq*2;m+)j=p_Jtobusm;if(j!=i)if(mnp) Jackm=-busi.Volt*busj.Volt*(YGi

12、j*cos(busi.Phase-busj.Phase)+YBij*sin(busi.Phase-busj.Phase);/Form JelseJackm=busi.Volt*busj.Volt*(YGij*sin(busi.Phase-busj.Phase)-YBij*cos(busi.Phase-busj.Phase);/Form Lelse if(j=i) if(mnp)Jackm=busi.Volt*qi;elseJackm=busi.Volt*ai-2*busi.Volt*busi.Volt*YBij;for(i=0;inp+npq;i+)for(int j=0;jnp+npq;j+

13、)printf(%d %d %f ,i,j,Jacij);printf(n);/Output the matrix to check the Jacobian matrixofstreamfout(out.txt,ios:app);fout -Jacobian Matrix- endl;for(i=0; inp+npq;i+ )for(j=0; jnp+npq; j+ )foutJacij t;foutendl;fout.close();return 0;4)线路损耗/8.calculate the power flow double* p_Pij, *p_Qij, *p_Pji, *p_Qj

14、i;p_Pij = new doublenL;p_Qij = new doublenL;p_Pji = new doublenL;p_Qji = new doublenL;int x1,x2;for( i=0; inL; i+ )x1=linei.NumI;x2=linei.NumJ;if(linei.Type=1)p_Piji=busx1.Volt*busx1.Volt*(-YGx1x2)-busx1.Volt*busx2.Volt*(-YGx1x2)*cos(busx1.Phase-busx2.Phase)+(-YBx1x2)*sin(busx1.Phase-busx2.Phase);p_

15、Qiji=-busx1.Volt*busx1.Volt*(linei.B+(-YBx1x2)-busx1.Volt*busx2.Volt*(-YGx1x2)*sin(busx1.Phase-busx2.Phase)-(-YBx1x2)*cos(busx1.Phase-busx2.Phase); p_Pjii=busx2.Volt*busx2.Volt*(-YGx2x1)-busx2.Volt*busx1.Volt*(-YGx2x1)*cos(busx2.Phase-busx1.Phase)+(-YBx2x1)*sin(busx2.Phase-busx1.Phase);p_Qjii=-busx2

16、.Volt*busx2.Volt*(linei.B+(-YBx2x1)-busx2.Volt*busx1.Volt*(-YGx2x1)*sin(busx2.Phase-busx1.Phase)-(-YBx2x1)*cos(busx2.Phase-busx1.Phase);elsep_Piji=busx1.Volt*busx1.Volt*(-YGx1x2)/linei.K-busx1.Volt*busx2.Volt*(-YGx1x2)*cos(busx1.Phase-busx2.Phase)+(-YBx1x2)*sin(busx1.Phase-busx2.Phase); p_Qiji=-busx

17、1.Volt*busx1.Volt*(-YBx1x2)/linei.K+linei.B)-busx1.Volt*busx2.Volt*(-YGx1x2)*sin(busx1.Phase-busx2.Phase)-(-YBx1x2)*cos(busx1.Phase-busx2.Phase); p_Pjii=busx2.Volt*busx2.Volt*(-YGx2x1*linei.K)-busx2.Volt*busx1.Volt*(-YGx2x1)*cos(busx2.Phase-busx1.Phase)+(-YBx2x1)*sin(busx2.Phase-busx1.Phase); p_Qjii

18、=-busx2.Volt*busx2.Volt*(-YBx2x1)*linei.K+linei.B)-busx2.Volt*busx1.Volt*(-YGx2x1)*sin(busx2.Phase-busx1.Phase)-(-YBx2x1)*cos(busx2.Phase-busx1.Phase);/p and q of PH bus and PV busint s=0;double p9,q9,Ps9,Qs9,PS=0,QS=0;for( i=0; inB; i+ )pi=0;qi=0;for(int j=0; jnB; j+ )pi+=(busj.Volt*(YGij)*cos(busj

19、.Phase)-busj.Volt*(YBij)*sin(busj.Phase); qi-=(busj.Volt*(YGij)*sin(busj.Phase)+busj.Volt*(YBij)*cos(busj.Phase); Psi=busi.Volt*cos(busi.Phase)*pi-busi.Volt*sin(busi.Phase)*qi; Qsi=busi.Volt*cos(busi.Phase)*qi+busi.Volt*sin(busi.Phase)*pi;for(i=0;inB;i+)PS+=Psi;QS+=Qsi;printf(PS=%7.7f,QS=%7.7fn,PS,Q

20、S);/lossdoublePloss=0, Qloss=0;for( i=0; in?计算雅客比矩阵各元素增加迭代次数k=k+1增加节点号i=i+1解修正方程,由及雅客比矩阵用高斯法求各节点的电压增量计算节点的新电压求出迭代是否收敛停止计算平衡节点的功率及线路功率6)得到的数据(out.txt)-Y Matrix-0+j-17.36110+j00+j00+j17.36110+j00+j00+j00+j00+j00+j00+j-160+j00+j00+j00+j00+j160+j00+j00+j00+j00+j-17.06480+j00+j00+j00+j00+j00+j17.06480+j1

21、7.36110+j00+j03.30738+j-39.3089-1.36519+j11.6041-1.94219+j10.51070+j00+j00+j00+j00+j00+j0-1.36519+j11.60412.55279+j-17.33820+j0-1.1876+j5.975130+j00+j00+j00+j00+j0-1.94219+j10.51070+j03.2242+j-15.84090+j00+j0-1.28201+j5.588240+j00+j160+j00+j0-1.1876+j5.975130+j02.80473+j-35.4456-1.61712+j13.6980+j00

22、+j00+j00+j00+j00+j00+j0-1.61712+j13.6982.77221+j-23.3032-1.15509+j9.784270+j00+j00+j17.06480+j00+j0-1.28201+j5.588240+j0-1.15509+j9.784272.4371+j-32.1539-Jacobian Matrix-16.40000-16.400000000017.491500000-17.49150000000040.1703-11.6041-10.51070003.30738-1.36519-1.9421900000-11.604117.57920-5.9751300

23、-1.365192.552790-1.18760000-10.5107016.098900-5.58824-1.9421903.224200-1.28201-16.400-5.97513036.0731-13.69800-1.187602.80473-1.61712000000-13.69823.4822-9.78427000-1.617122.77221-1.155090-17.491500-5.588240-9.7842732.86400-1.282010-1.155092.437100-3.307381.365191.9421900038.4474-11.6041-10.51070000

24、01.36519-2.5527901.187600-11.604117.09720-5.9751300001.942190-3.2242001.28201-10.5107015.582900-5.588240001.18760-2.804731.6171200-5.97513034.8181-13.6980000001.61712-2.772211.15509000-13.69823.1242-9.7842700001.2820101.15509-2.437100-5.588240-9.7842731.4437-Jacobian Matrix-16.92690000-16.9269000001

25、.6879300018.169100000-18.1691000000.0041.9297-12.1301-11.15360003.54272-1.0628-1.7664600000-12.045518.06090-6.0153900-1.781381.308190-2.102620000-11.0484016.814400-5.76607-2.3360802.4259800-1.97778-16.926900-6.36224037.9476-14.658500-0.03.05959-0.000000-14.472124.8873-10.4152000-2.5091.86088-1.47389

26、0-18.169100-6.051570-10.472134.692800-0.0-0.2.662700-3.521491.06281.7664600042.0299-12.1301-11.1536000001.78138-3.88402.1026200-12.045517.20370-6.0153900002.336080-4.31386001.97778-11.0484016.299300-5.766071.68793000.0-2.975490.00-6.36224038.3226-14.65850000002.509-3.982891.47389000-14.472124.2355-1

27、0.415200.000.00.-2.6089300-6.051570-10.472134.8585-Jacobian Matrix-16.74570000-16.7457000001.6304300018.038800000-18.0388000000.0041.3695-11.8919-10.96860003.48069-1.02775-1.7371200000-11.805717.69180-5.886100-1.76021.280910-2.02170000-10.8651016.547600-5.68251-2.2973702.4065500-1.91027-16.745700-6.

28、21183037.3041-14.346500-0.02.95313-0.000000-14.170424.4052-10.2348000-2.429091.86079-1.433530-18.038800-5.946930-10.287234.27300-0.0-0.2.5984700-3.480891.027751.7371200041.3703-11.8919-10.9686000001.7602-3.7818902.021700-11.805716.69410-5.886100002.297370-4.20764001.91027-10.8651015.948800-5.682511.

29、63043000.0-2.950770.00-6.21183037.3083-14.34650000002.42909-3.862621.43353000-14.170423.7059-10.234800.000.00.-2.5970600-5.946930-10.287234.2743-Jacobian Matrix-16.74350000-16.7435000001.6300018.037400000-18.0374000000.850041.3625-11.8888-10.96640003.48016-1.02713-1.7366200000-11.802617.68710-5.8845

30、00-1.760081.280530-2.020450000-10.8628016.544400-5.68158-2.2970302.4063200-1.90929-16.743500-6.20987037.296-14.342600-0.02.95114-0.000000-14.166724.3994-10.2326000-2.427941.86097-1.433020-18.037400-5.945670-10.28534.268100-0.0-0.2.5973400-3.480161.027131.7366200041.3625-11.8888-10.9664000001.76008-3

31、.7805302.0204500-11.802616.68710-5.884500002.297030-4.20632001.90929-10.8628015.944400-5.681581.63000.0-2.951140.00-6.20987037.296-14.34260000002.42794-3.860971.43302000-14.166723.6994-10.232600.85000.00.-2.5973400-5.945670-10.28534.2681-iteration- iteration = 4-voltage magnitude and angle-1.04001.0

32、250.9.280011.0250.4.664761.02579-0.-2.216790.-0.-3.988811.01265-0.-3.68741.025770.3.71971.015880.0.1.032350.1.96672-bus P and Q-10.716410.21.630.30.85-0.4005-1.25-0.56-0.9-0.37008-1-0.35900-line flow-NUM-i-j-begin-end-141-0.71641+j-0.0.71641+j0.27046272-1.63+j0.1.63+j0.393-0.85+j0.0.85+j-0.4780.+j-0

33、.-0.+j-0.5980.+j0.-0.+j-0.6750.+j-0.-0.+j-0.7960.+j-0.-0.+j-0.854-0.+j-0.0.+j0.964-0.+j-0.0.+j0.-Ploss and Qloss-Ploss = 0.Qloss = -0.3.思考题3.1潮流计算的方法有哪些?各有何特点?答:潮流计算分为手算和机算两大类,其中机算又有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法、P-Q分解法等算法。特点:手算求解潮流一般只用在简单的网络中,其计算量大,对于多节点的网络用手算一般难以解决问题,但通过手算可以加深物理概念的理解,还可以在运用计算机计算前以手算求取某些原始数据。

34、高斯-赛德尔迭代法:算法简单,对初值的要求不高,但需要迭代的次数多,收敛的速度慢,在早期的潮流计算程序中应用很多,之后逐渐被牛顿-拉夫逊迭代法所取代,但仍可作为计算程序前几次迭代的算法,以弥补后者对初值要求高的缺点。牛顿-拉夫逊迭代法:是常用的解非线性方程组的方法,也是当前广泛采用的计算潮流的方法,其收敛速度快,几次迭代就可以得到最终的结果。但其缺点是要求初值的选择得比较接近它们的精确值,否则迭代过程可能不收敛。P-Q分解法潮流计算:派生于以极坐标表示时的牛顿-拉夫逊法,其根据电力系统的特点,对后者的修正方程做了简化,P-Q分解法的系数矩阵B和B”代替了牛拉法中的雅可比矩阵J,阶数降低,其中的

35、元素在迭代过程中不发生变化,而且元素对称,这些都大大提高了运算速度,而且精确度几乎不受影响。P-Q分解法的收敛特性接近于直线,而牛顿-拉夫逊的收敛速度要比P-Q分解法快,但是由于牛顿-拉夫逊每次迭代都要形成雅客比矩阵,所以一次迭代的时间比P-Q分解法长。3.2 如果交给你一个任务,请你用已有的潮流计算软件计算北京城市电网的潮流,你应该做哪些工作?(收集哪些数据,如何整理,计算结果如何分析) 有现有的潮流计算软件分析北京城市电网的潮流,主要收集以下数据:(1)北京城市电网中所有的节点支路的相关数据,并对节点和支路分类处理PQ节点要了解节点的注入有功和无功功率PV节点要了解节点电压大小注入有功功率及节点所能提供的最大和最小无功功率对于平衡节点要了解节点的电压大小相位、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论