2010高三数学一轮复习精品(二)导数的应用(1)_第1页
2010高三数学一轮复习精品(二)导数的应用(1)_第2页
2010高三数学一轮复习精品(二)导数的应用(1)_第3页
2010高三数学一轮复习精品(二)导数的应用(1)_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2010高三数学一轮复习精品(二):导数的应用(1)一、内容归纳-知识精讲:(1) 函数的单调性如果函数y=f(x)在某个区间内可导,那么若 f(x)0,贝y f(x)为增函数;若f (x)0则f (x)为减函数;若f (x)=0则f (x)为常数;(2) 函数的极值 极值定义如果函数f (x)在点X。附近有定义,那么对X。附近的点,都有f(x) f(x)我们就说f(x)函数的一个极小值,记作y极小值= f(x);极大值与极小值统称为极值。 极值判别法当函数f (x)在点X处连续时,极值判断法是:如果在x附近的左侧f (x)0,右侧f(x)0,那么f(X)是极大值;如果在X0附近的左侧f (x

2、)0,那么f(x)是极小值。 求可导函数极值的步骤:首先:求导数f(x);再求导数f(x)=0的根;最后:检查f(x)在方程根左右的值的符号, 如果左正右负,那么f(x)在这个根处取极大值;如果左负右正,那么f(x)在这个根处取极小值。(3 )函数的最大值与最小值在闭区间a,b上连续,在(a,b )内可导,f (x)在a,b上求最大值与最小值的步骤:先求f(x)在(a,b )内的极值;再将 f (x)的各极值与f (a)、f (b)比较,其中最大的一个是最大值,最小的一个是最小值。2 重点难点:多项式导数的求法,利用导数求函数的极值与最值。3.思维方式:求导、解不等式。4 特别注意:要注意区分

3、函数最值与极值的区别、联系。二、问题讨论解: 例1、研究函数 f (x) =ax3 - bx2 _lx - 1的单调性,其中a工0。 af (x) = 3ax2 2bxa当 a0 时,f (x)o,则 x-b ,b233a3af(x)0 时,卫 L3ax :-b 、b233a所以f(x)在( -m2-b - b 33a-b b23 3a,+8)上单调递增;3a b23上单调递减。3a23。,当a0:= 0t1 或 x0,当-1 x1 时 f (x) 0,函数f (x)在(s, -1) ( 1 , +s)上是增函数,(-1 , 1 )上是减函数。因此,x=-1时,函数取得极大值f ( -1)=1

4、。当x =1时,函数取得极小值f (1) =-1 O思维点拔根据题设结构进行逆向联想,合理地实实现现问题的转化,使抽象问题具体化。例5已知二次函数f (x) =a ( x2-1) +b x,在X 卜1,1的最大值为m,最小值为n,且I m|丰丨n| ob5(1)求证: 一 0,求 a, b。a2【解】(1) f (1)=b, f (-1)=-b,又 I b |=卜 b| 而| m | 丰 | n |.在x=-1或x=1处只会有一个最值点,当(-1,1 )时,f (x)有一个最值点f (x) =2 ax b =0,bbx/ -10,所以f (一-)= _b _4a必是最小值2a4ab25一 w而且a 0 b=2a=2 亠a =2或丿或lb =2A = -2a =2 或 a =12=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论