1、函数定义域、值域求法总结12页_第1页
1、函数定义域、值域求法总结12页_第2页
1、函数定义域、值域求法总结12页_第3页
1、函数定义域、值域求法总结12页_第4页
1、函数定义域、值域求法总结12页_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、函数定义域、值域求法总结1、函数的定义域是指自变量“x”的取值集合。2、在同一对应法则作用下,括号内整体的取值范围相同。一般地,若已知 f(x)的定义域为a,b,求函数fg(x)的定义域时,由于分别在两个函数中的x和g(x)受同一个对应法则的作用,从而范围相同。因此fg(x)的定义域即为满足条件ag(x)b的x的取值范围。 一般地,若已知 fg(x)的定义域为a,b,求函数 f(x)的定义域时,由于x 和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当axb 时,g(x)的取值范围。 定义域是X的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。一、定义域是

2、函数y=f(x)中的自变量x的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。(3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx中xk+/2;y=cotx中xk等等。( 6 )中x二、值域是函数y=f(x)中y的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法(10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。三、典例解

3、析1、定义域问题例1 求下列函数的定义域: ; ; 解:x-2=0,即x=2时,分式无意义,而时,分式有意义,这个函数的定义域是.3x+20,即x-时,根式无意义,而,即时,根式才有意义,这个函数的定义域是|.当,即且时,根式和分式 同时有意义,这个函数的定义域是|且另解:要使函数有意义,必须: 例2 求下列函数的定义域: 解:要使函数有意义,必须: 即: 函数的定义域为: 要使函数有意义,必须: 定义域为: x|要使函数有意义,必须: 函数的定义域为:要使函数有意义,必须: 定义域为: 要使函数有意义,必须: 即 x 定义域为:例3 若函数的定义域是R,求实数a 的取值范围 解:定义域是R,

4、例4 若函数的定义域为-1,1,求函数的定义域解:要使函数有意义,必须:函数的定义域为:例5 已知f(x)的定义域为1,1,求f(2x1)的定义域。分析:法则f要求自变量在1,1内取值,则法则作用在2x1上必也要求2x1在 1,1内取值,即12x11,解出x的取值范围就是复合函数的定义域;或者从位置上思考f(2x1)中2x1与f(x)中的x位置相同,范围也应一样,12x11,解出x的取值范围就是复合函数的定义域。(注意:f(x)中的x与f(2x1)中的x不是同一个x,即它们意义不同。)解:f(x)的定义域为1,1,12x11,解之0x1,f(2x1)的定义域为0,1。例6已知已知f(x)的定义

5、域为1,1,求f(x2)的定义域。答案:1x21 x211x1 练习:设的定义域是-3,求函数的定义域解:要使函数有意义,必须: 得: 0 函数的定域义为:例7已知f(2x1)的定义域为0,1,求f(x)的定义域因为2x1是R上的单调递增函数,因此由2x1, x0,1求得的值域1,1是f(x)的定义域。已知f(3x1)的定义域为1,2),求f(2x+1)的定义域。)(提示:定义域是自变量x的取值范围)练习:已知f(x2)的定义域为1,1,求f(x)的定义域若的定义域是,则函数的定义域是()已知函数的定义域为,函数的定义域为,则()B 2、求值域问题利用常见函数的值域来求(直接法)一次函数y=a

6、x+b(a0)的定义域为R,值域为R;反比例函数的定义域为x|x0,值域为y|y0;二次函数的定义域为R,当a0时,值域为;当a0,=,当x0时,则当时,其最小值;当a0)时或最大值(a0)时,再比较的大小决定函数的最大(小)值.若a,b,则a,b是在的单调区间内,只需比较的大小即可决定函数的最大(小)值.注:若给定区间不是闭区间,则可能得不到最大(小)值;当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.练习:1、求函数y=3+(23x)的值域解:由算术平方根的性质,知(23x)0, 故3+(23x)3。 函数的值域为.2、求函数 的值域解: 对称轴 例3 求函数y

7、=4x1-3x(x1/3)的值域。解:法一:(单调性法)设f(x)=4x,g(x)= 1-3x ,(x1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x1-3x 在定义域为x1/3上也为增函数,而且yf(1/3)+g(1/3)=4/3,因此,所求的函数值域为y|y4/3。小结:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。练习:求函数y=3+4-x的值域。(答案:y|y3)法二:换元法(下题讲)例4 求函数 的值域 解:(换元法)设,则 点评:将无理函数或二次型的函数转化为二次函数

8、,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。练习:求函数y=x-1 x的值域。(答案:y|y3/4例5 (选)求函数 的值域解:(平方法)函数定义域为: 例6 (选不要求)求函数的值域解:(三角换元法) 设 小结:(1)若题目中含有,则可设 (2)若题目中含有则可设,其中(3)若题目中含有,则可设,其中(4)若题目中含有,则可设,其中(5)若题目中含有,则可设其中-10134-4xy 例7 求 的值域解法一:(图象法)可化为 如图, 观察得值域解法二:(零点法)画数轴 利用可得。-103解法三:(选)(不等式法) 同样可得值域练习

9、:的值域呢? ()(三种方法均可)例8 求函数 的值域解:(换元法)设 ,则 原函数可化为10xy 例9求函数 的值域解:(换元法)令,则 由指数函数的单调性知,原函数的值域为 例10 求函数 的值域解:(图象法)如图,值域为 例11 求函数 的值域解法一:(逆求法)解法二:(分离常数法)由 ,可得值域小结:已知分式函数,如果在其自然定义域(代数式自身对变量的要求)内,值域为;如果是条件定义域(对自变量有附加条件),采用部分分式法将原函数化为,用复合函数法来求值域。例12 求函数 的值域011解法一:(逆求法) 小结:如果自变量或含有自变量的整体有确定的范围,可采用逆求法。解法二:(换元法)设

10、 ,则 01练习:y=;(y(-1,1)).例13 函数 的值域解法一:(逆求法) 2解法二:(换元法)设 ,则 解法三:(判别式法)原函数可化为 1) 时 不成立2) 时,综合1)、2)值域解法四:(三角换元法)设,则 原函数的值域为10例14 求函数的值域5解法一:(判别式法)化为1)时,不成立2)时,得综合1)、2)值域解法二:(复合函数法)令,则 所以,值域例15 函数的值域解法一:(判别式法)原式可化为 解法二:(不等式法)1)当时,2) 时,综合1)2)知,原函数值域为例16 (选) 求函数的值域解法一:(判别式法)原式可化为 解法二:(不等式法)原函数可化为 当且仅当时取等号,故

11、值域为例17 (选) 求函数的值域解:(换元法)令 ,则原函数可化为。小结:已知分式函数 ,如果在其自然定义域内可采用判别式法求值域;如果是条件定义域,用判别式法求出的值域要注意取舍,或者可以化为(选)的形式,采用部分分式法,进而用基本不等式法求出函数的最大最小值;如果不满足用基本不等式的条件,转化为利用函数的单调性去解。 练习:1 、;解:x0,y11.另外,此题利用基本不等式解更简捷:(或利用对勾函数图像法)2 、0y5.3 、求函数的值域; 解:令0,则,原式可化为,u0,y,函数的值域是(-,.解:令 t=4x-0 得 0x4 在此区间内 (4x-)=4 ,(4x-) =0函数的值域是 y| 0y24、求函数y=|x+1|+|x-2|的值域. 解法1:将函数化为分段函数形式:,画出它的图象(下图),由图象可知,函数的值域是y|y3.解法2:函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,易见y的最小值是3,函数的值域是3,+. 如图 5、求函数的值域解:设 则 t0 x=1-代入得 t0 y46、(选)求函数的值域方法一:去分母得 (y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论