版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、20102014年高考真题备选题库第5章 数列第4节 数列求和1(2014北京,13分)已知an 是等差数列,满足a13,a412,数列bn 满足b14,b420,且 bnan是等比数列(1)求数列an和bn 的通项公式;(2)求数列bn的前n 项和解:(1)设等差数列an的公差为d,由题意得d3.所以ana1(n1)d3n(nN*)设等比数列bnan的公比为q,由题意得q38,解得q2.所以bnan(b1a1)qn12n1.从而bn3n2n1(nN*)(2)由(1)知bn3n2n1(nN*)数列3n的前n项和为n(n1),数列2n1的前n项和为12n1.所以,数列bn的前n项和为n(n1)2
2、n1.2(2014湖南,12分)已知数列an 的前n 项和Sn,nN* .(1)求数列an 的通项公式;(2)设bn2an(1)nan ,求数列bn 的前2n 项和解:(1)当n1时,a1S11;当n2时,anSnSn1n.故数列an的通项公式为ann.(2)由(1)知,ann,故bn2n(1)nn.记数列bn的前2n项和为T2n,则T2n(212222n)(12342n)记A212222n,B12342n,则A22n12,B(12)(34)(2n1)2nn.故数列bn的前2n项和T2nAB22n1n2.3(2014广东,14分)设各项均为正数的数列an 的前n 项和为Sn ,且 Sn满足 S
3、(n2n3)Sn3(n2n)0,nN*.(1)求a1 的值;(2)求数列an 的通项公式;(3)证明:对一切正整数n ,有.解:(1)由题意知,S(n2n3)Sn3(n2n)0,nN*.令n1,有S(1213)S13(121)0,可得SS160,解得S13或2,即a13或2,又an为正数,所以a12.(2)由S(n2n3)Sn3(n2n)0,nN*可得,(Sn3)(Snn2n)0,则Snn2n或Sn3,又数列an的各项均为正数,所以Snn2n,Sn1(n1)2(n1),所以当n2时,anSnSn1n2n(n1)2(n1)2n.又a1221,所以an2n.(3)当n1时,成立;当n2时,所以.所
4、以对一切正整数n,有.4(2014安徽,12分)数列an 满足a11,nan1(n1)ann(n1),nN*.(1)证明:数列是等差数列;(2)设 bn3n,求数列bn的前 n项和 Sn.解:(1)证明:由已知可得1,即1.所以是以1为首项,1为公差的等差数列(2)由(1)得1(n1)1n,所以ann2.从而bnn3n.Sn131232333n3n,3Sn132233(n1)3nn3n1.得2Sn31323nn3n1n3n1.所以Sn.5(2014四川,12分)设等差数列an的公差为d,点(an,bn)在函数f(x)2x的图象上(nN*)(1)证明:数列bn为等比数列;(2)若a11,函数f(
5、x)的图象在点(a2,b2)处的切线在x轴上的截距为2,求数列anb的前n项和Sn.解:(1)证明:由已知,bn2an0.当n1时,2an1an2d.所以,数列bn是首项为2a1,公比为2d的等比数列(2)函数f(x)2x在(a2,b2)处的切线方程为y2a2(2a2ln 2)(xa2),它在x轴上的截距为a2.由题意,a22,解得a22.所以,da2a11,ann,bn2n,anbn4n.于是,Sn14242343(n1)4n1n4n,4Sn142243(n1)4nn4n1.因此,Sn4Sn4424nn4n1n4n1.所以Sn.6(2013江苏,16分)设an是首项为a,公差为d的等差数列(
6、d0),Sn是其前n项的和记bn,nN*,其中 c为实数(1)若c0,且b1,b2,b4成等比数列,证明:Snkn2Sk(k,nN*);(2)若bn是等差数列,证明:c0.证明:本题考查等差、等比数列的定义,通项及前n项和,意在考查考生分析问题、解决问题的能力与推理论证能力由题设,Snnad.(1)由c0,得bnad.又b1,b2,b4成等比数列,所以bb1b4,即2a,化简得d22ad0.因为d0,所以d2a.因此,对于所有的mN*,有Smm2a.从而对于所有的k,nN*,有Snk(nk)2an2k2an2Sk.(2)设数列bn的公差是d1,则bnb1(n1)d1,即b1(n1)d1,nN*
7、,代入Sn的表达式,整理得,对于所有的nN*,有n3n2cd1nc(d1b1)令Ad1d,Bb1d1ad,Dc(d1b1),则对于所有的nN*,有An3Bn2cd1nD.(*)在(*)式中分别取n1,2,3,4,得ABcd18A4B2cd127A9B3cd164A16B4cd1,从而有由,得A0,cd15B,代入方程,得B0,从而cd10.即d1d0,b1d1ad0,cd10.若d10,则由d1d0,得d0,与题设矛盾,所以d10.又cd10,所以c0.7(2013浙江,14分)在公差为d的等差数列an中,已知a110,且a1,2a22,5a3成等比数列(1)求d,an;(2) 若d0,求|a
8、1|a2|a3|an|.解:本题主要考查等差数列、等比数列的概念,等差数列通项公式,求和公式等基础知识,同时考查运算求解能力(1)由题意得5a3a1(2a22)2,即d23d40.故d1或d4.所以ann11,nN*或an4n6,nN*.(2)设数列an的前n项和为Sn.因为d0,由(1)得d1,ann11.则当n11时,|a1|a2|a3|an|Snn2n.当n12时,|a1|a2|a3|an|Sn2S11n2n110.综上所述,|a1|a2|a3|an|8(2013天津,14分)已知首项为的等比数列an的前n项和为Sn(nN*), 且2S2,S3,4S4成等差数列 (1)求数列an的通项公
9、式; (2)证明Sn(nN*)解:本题主要考查等差数列的概念,等比数列的概念、通项公式、前n项和公式,数列的基本性质等基础知识考查分类讨论的思想,考查运算能力、分析问题和解决问题的能力(1)设等比数列an的公比为q,因为2S2,S3,4S4成等差数列,所以S32S24S4S3,即S4S3S2S4,可得2a4a3,于是q.又a1,所以等比数列an的通项公式为ann1(1)n1.(2)证明:Sn1n,Sn1n当n为奇数时,Sn随n的增大而减小,所以SnS1;当n为偶数时,Sn随n的增大而减小,所以SnS2.故对于nN*,有Sn.9. (2013陕西,12分)设Sn表示数列an的前n项和(1)若an
10、为等差数列,推导Sn的计算公式;(2)若a11,q0,且对所有正整数n,有Sn.判断an是否为等比数列,并证明你的结论解:本题主要考查等差数列前n项和公式推导所用的倒序相加法,考查等比数列的证明方法和一般数列切入点的技巧,深度考查考生应用数列作工具进行逻辑推理的思维方法(1)法一:设an的公差为d,则Sna1a2ana1(a1d)a1(n1)d,又Snan(and)an(n1)d,2Snn(a1an),Sn.法二:设an的公差为d,则Sna1a2ana1(a1d)a1(n1)d,又Snanan1a1a1(n1)da1(n2)da1,2Sn2a1(n1)d2a1(n1)d2a1(n1)d2na1
11、n(n1)d,Snna1d.(2)an是等比数列证明如下:Sn,an1Sn1Snqn.a11,q0,当n1时,有q,因此,an是首项为1且公比为q的等比数列10(2013重庆,13分)设数列an 满足:a11,an13an,nN.(1)求an的通项公式及前n项和Sn;(2)已知bn是等差数列,Tn为其前n项和,且b1a2,b3a1a2a3,求T20.解:本题主要考查等比数列、等差数列的通项公式与前n项和等基础知识,考查逻辑思维能力(1)由题设知an是首项为1,公比为3的等比数列,所以an3n1,Sn(3n1)(2)b1a23,b3a1a2a313913,b3b1102d,所以数列bn的公差d5
12、,故T2020351 010.11(2013湖南,13分)设Sn为数列an的前n项和,已知a10,2ana1S1Sn,nN*.(1)求a1,a2,并求数列an的通项公式;(2)求数列nan的前n项和解:本题主要考查数列的通项公式和数列求和,结合转化思想,意在考查考生的运算求解能力(1)令n1,得2a1a1a,即a1a.因为a10,所以a11.令n2,得2a21S21a2,解得a22.当n2时,由2an1Sn,2an11Sn1两式相减得2an2an1an,即an2an1.于是数列an是首项为1,公比为2的等比数列因此,an2n1.所以数列an的通项公式为an2n1.(2)由(1)知,nann2n
13、1.记数列n2n1的前n项和为Bn,于是Bn122322n2n1,2Bn12222323n2n.得Bn12222n1n2n2n1n2n.从而Bn1(n1)2n.12(2013广东,14分)设各项均为正数的数列an的前n项和为Sn,满足4Sna4n1,nN*,且a2,a5,a14构成等比数列(1)证明:a2 ;(2)求数列an的通项公式;(3)证明:对一切正整数n,有.解:本题主要考查通过“an与Sn法”将递推数列转化为等差数列及裂项求和法,意在考查考生运用化归与转化思想解决问题的能力(1)证明:an0,令n1,有4S1a41,即4a1a41,a2.(2)当n2时,4Sna4n1,4Sn1a4(
14、n1)1,两式相减得4anaa4,有a(an2)2,即an1an2,an从第2项起,是公差为2的等差数列,a5a232a26,a14a2122a224,又a2,a5,a14构成等比数列,有aa2a14,则(a26)2a2(a224),解得a23,由(1)得a11,又an1an2(n2)an是首项为1,公差为2的等差数列,即an1(n1)22n1.(3)证明:由(2)得.13(2012山东,12分)已知等差数列an的前5项和为105,且a102a5.(1)求数列an的通项公式;(2)对任意mN*,将数列an中不大于72m的项的个数记为bm,求数列bm的前m项和Sm.解:(1)设数列an的公差为d
15、,前n项和为Tn.由T5105,a102a5,得到解得a17,d7.因此ana1(n1)d77(n1)7n(nN*)(2)对mN*,若an7n72m,则n72m1.因此bm72m1,所以数列bm是首项为7公比为49的等比数列故Sm.14(2012浙江,14分)已知数列an的前n项和为Sn,且Sn2n2n,nN*,数列bn满足an4log2bn3,nN*.(1)求an,bn;(2)求数列anbn的前n项和Tn.解:(1)由Sn2n2n,得当n1时,a1S13;当n2时,anSnSn14n1,易知当n1时也满足通式an4n1,所以an4n1,nN*.由4n1an4log2bn3,得bn2n1,nN
16、*.(2)由(1)知anbn(4n1)2n1,nN*,所以Tn3721122(4n1)2n1,2Tn32722(4n5)2n1(4n1)2n,所以2TnTn(4n1)2n34(2222n1)(4n5)2n5.故Tn(4n5)2n5,nN*.15(2012新课标全国,5分)数列an满足an1(1)nan2n1,则an的前60项和为()A3 690B3 660C1 845 D1 830解析:不妨令a11,根据题意,得a22,a3a5a71,a46,a610,所以当n为奇数时,an1,当n为偶数时构成以a22为首项,以4为公差的等差数列所以前60项和为S603023041 830.答案:D16(20
17、11江苏,5分)设1a1a2a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是_解析:设a2t,则1tqt1q2t2q3,由于t1,所以qmaxt,故q的最小值是.答案:17(2011广东,14分)设b0,数列an满足a1b,an(n2)(1)求数列an的通项公式;(2)证明:对于一切正整数n,2anbn11.(1)由an联想到取倒数得,令cn,有cncn1,当b1时,cn为等差数列,当b1时,设cnk(cn1k),展开对比得k,构造等比数列cn,求得cn后再求an;(2)当b1时,易验证,当b1时,先用分析法将2anbn11转化为bn1
18、1,利用公式anbn(ab)(an1an2bbn1),再转化为2nbn(bn11)(1bb2bn1),然后将右边乘开,再利用基本不等式即可得证解:(1)a1b0,an,令cn,则cncn1,当b1时,cn1cn1,且c11cn是首项为1,公差为1的等差数列,cn1(n1)1n,于是cnn,这时an1;当b1时,cn(cn1),且c1,cn是首项为,公比为的等比数列,cn()n1,由得an,an.(2)证明:由(1)得,当b1时,an1,2anbn1122成立,当b1时,an,2anbn11bn11,而1bn(1b)(1bb2bn1),又b0,故只需证:2nbn(bn11)(1bb2bn1),()而(bn11)(1bb2bn2bn1)(b2nb2n1bn1)(bn1bn2b1)(b2n1)(b2n1b)(bn1bn1)2bn2bn2bn2nbn,()式成立,原不等式成立18(2010天津,14分)在数列an中,a10,且对任意kN*,a2k1,a2k,a2k1成等差数列,其公差为2k.(1)证明:a4,a5,a6成等比数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 优惠合同协议的意义
- 全新电脑购销意向
- 教官发展服务合同
- 公路工程招标文件的标准范本
- 育肥猪购销协议
- 有机纱线购销合同
- 招标文件范本摇号定标的合同条款
- 童装采购合同
- 代理招商合作合同定制
- 个人工作保安全
- 曳引驱动乘客电梯安全风险评价内容与要求
- 护理疑难病例讨论肺心病
- 耳硬化症护理查房
- 浙江省义乌市六校联考2024届八年级物理第二学期期末学业质量监测试题含解析
- 北京市昌平区2023-2024学年七年级上学期期末生物试卷
- 消防员心理培训课件
- 【一例小儿支气管肺炎的临床护理个案分析2200字】
- 项目管理机构及服务方案
- 蔬菜水果供货服务方案
- 2023年高级电气工程师年终总结及年后展望
- “源网荷储”一体化项目(储能+光伏+风电)规划报告
评论
0/150
提交评论