流体力学复习提纲第二版讲解_第1页
流体力学复习提纲第二版讲解_第2页
流体力学复习提纲第二版讲解_第3页
流体力学复习提纲第二版讲解_第4页
流体力学复习提纲第二版讲解_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-精品文档- 流体力学复习提纲 第一章 流体的物理性质 .主要概念 (1)表面力和质量力 : 和运动粘性系数(2)动力粘性系数? ?v ? 运动粘性系数是衡量流体动量扩散的参量,其中包含了流体本身粘性大小和密度。在PPT的综合影响第五章中有比较详细的阐述。 (3)粘性流体和理想流体 (4)牛顿流体和非牛顿流体:它们都属于粘性流体 dV nx?k?()? dy,满足下式:是牛顿流体。所以对于牛顿流体,0时 0, 当n =1,k = dV (1-1) x?)(? dy,是非牛顿流体,时非牛顿流体可以分成各种类型。 0,n1,k 0当 .关键问题: (1)表面力 单位面积的流体所受的表面力主要可概括

2、为法向应力p和切向应力 ,法向应力一般 为压强(但要注意:在高等流体力学中法向应力还包括其他内容),切向应力也可称为剪切应力或粘性应力。 A. 流体静止时,切向应力0, 只考虑压强(法向应力)的作用; 1 B. 流体运动时,法向应力p和切向应力一般都需考虑 2, 即单位面积所受的力,所以面积A上的切向和法向所 C. 需注意应力的单位是N/m受的力由下式计算: ?AF?pF?A 切法 (2)固体和液体剪切应力的区别。下面以牛顿流体和固 首先弄清楚什么是应力?应力是物体内部所受的力(单位面积) 体比较剪切应力的差异。 固体剪切应力:由虎克定律描述,切应力与角变形大小成正比 ?G? 10)Pa (1

3、0不同材料G大约是是剪切模量 G , 流体剪切应力:由牛顿粘性定律描述,切应力与角变形速率成正比 ?dVdx? dydt -3-6 (空气), 10) 是动力粘性系数, 其数量级10(水 (PaS) 正因如此,流体只要有剪切应力的作用,就会发生连续运动和变形,一旦流体静止下来,流体中就不存在剪切应力,而且所受的剪切应力不论多么小,只要有足够的时间,就会产生任意大的变形。“流体经不起搓,一搓就会起旋涡”陆士嘉 (3)理想流体与粘性流体 任何实际流体都有粘性,理想流体只是一种近似。根据牛顿粘性定律,即上面(1-1)式,较小时,或者速度梯度不太大(比如说均匀流动)的情况下,可以把流体当作当粘性系数理

4、想流体来处理。比如速度均匀的流动等。在理想流体模型中,流体微团不受剪切应力(粘2 性应力)的作用。 再比如边界层问题,在边界层内,由于存在很大的速度梯度,必须考虑粘性应力的作用,即考虑粘性的影响;在边界层外,速度梯度一般较小,可视为理想流体。 理想流体近似会给计算分析带来很大的方便,可以直接应用伯努利方程,有用能量的损失(相当于摩擦损耗为热能)为0。 (4)气体和液体粘性的来源和成因 气体:分子扩散引起的动量交换;液体:分子内聚力 第二章. 流体静力学 流体静力学研究的是静止状态下流体的平衡规律, 由平衡规律求静压强分布,并求静水总压力;这里的 “静止” 是相对于坐标系而言, 无论是惯性坐标系

5、和非惯性坐标系,只要达到稳定后,流体质点之间没有相对运动,就意味着流体粘性不起作用,所以流体静力学的讨论无须区分理想流体和实际流体. 1.主要概念 (1)等压面 (2)绝对压强、计示压强(表压强)、真空度 注意真空度是用大气压减去流体压强,是正值。 (3)压力体 2.关键问题 (1)流体静压强的分布规律 ?p1?f?0?x ?x?3 p?1 0?f?y ?y?p?10?f?z ?z? 物理意义:在静止流体中,压强在某方向上的变化率与此方向的质量力成正比。 ?(fdx?fdy?dp?fdz)zyx: 那么总压强的增量 ?(fdx?fdydp?fdz)? zxy上式表明: 流体总的静压强的增量与x

6、 , y , z 三个方向的质量力有关。等压面恒与质量力的合力方向正交。注意这里各方向的质量力相当于各方向的加速度,即流体每单位质量所受的力。 其简明理解是: 对只受重力作用的静止流体, 其压强随着淹深h的增大而增大,等压面与重力方向相垂直; 如果还存在水平方向的加速度, 那么等压面与合加速度方向相垂直。 ()静止流体的能量(注意这里的静止是绝对静止) 在重力作用下,静止流体包含了两部分势能:压强势能和重力势能。只要是在同一容器中,各位置的流体总势能 ( 压强势能+重力势能 ) 都相同,表示成水头形式: p ?Cz? ?g p/g表示压强水头。这是伯努利方程在静止情况下的表达形式。z表示位置水

7、头, 静水总压力的计算(3) . 倾斜平面的液体总压力 总压力大小: ?gh?AF? c静止液体作用在倾斜平面上的总压力:其形心处的压强与倾斜方向上面积的乘积。 总压力作用点的计算并不在考试范围内。但由上式可以看出:总压力的作用点与形心4 并非一致。 二维曲面的液体总压力B. ?A?ghF 总压力在水平方向的分力: xxcx?gV?F 总压力在垂直方向的分力: Py V即为曲面上端的压力体 P 合力即为要求的总压力: 22FF?F? yx ()压力体的“虚”与“实”问题 第三章 流体运动学和动力学基础 .主要概念 (1) 定常流动: 流体在流动过程其空间的物理参数不随时间变化,空间各点的物理参

8、数(流速、压强等)可以分布不均匀 非定常流动: 流体在流动过程其空间的物理参数随时间变化 (2) 流线: 是描述流场的方式,流线上每一点的速度与其切线方向相一致 迹线: 流体质点在流动过程中形成的轨迹 (3) 急变流和缓变流 (4) 水力半径:总流的有效截面积和湿周之比 当量直径:当量直径是水力半径的4倍 (5) 静压:流体在流动过程中由水银柱所测得的当地压强 1 动压:流体在流动过程中因具有动能的等效压强,单位体积流体的等效动压是2?V 25 1 单位质量流体的等效动压是 2V 2总压:静压与动压之和 2. 关键问题 (1)欧拉描述与拉格朗日描述 欧拉描述又称“本地法”,主要着眼于某一时刻流

9、场中每个空间点上的流动参数的分布; 拉格朗日描述又称“随体法”,主要着眼于每一个流体质点的流动参数随时间的变化。 这是看问题的两种视角。 (2)随体加速度,当地加速度和迁移加速度 首先要明确的是:正宗的加速度只有一个,那就是随体加速度,它是流体质点的加速度。如果直接给出单个流体粒子运动的情况(参数方程),那求随体加速度很容易,但在流体力学问题中,经常给定的是空间速度分布情况(比如管内各截面的流速分布),即欧拉描述,由于欧拉描述是着眼于某时刻速度在空间的分布情况,并不直接给出单个粒子运动信息,那么求随体加速度时,就派生出“当地加速度”和“迁移加速度”,其表达式是: ?u?u?u?u?u?v?wa

10、?x ?z?t?x?y?V?V?)?(V?a?v?v?vv? w?uv?a?t?y z?y?txww?ww?w?a?u?vz zx?y?t? 可以说加速度的表达式之所以变得如此复杂, 完全是欧拉描述“惹的祸”。 欧拉描述加速度表达式理解的关键请看下图: 6 )tz(y(t),?f(t,x(t),u(t)? ?)(t(t),z(t,x(t),?v(t)y ?)(tt),zyt,x(t),w(t)?(? )t(w(v(t)d(d(u(t)d?a?a?, , a zxy dtdtdt可以先由此求出粒子坐标或速度的参当给出欧拉描述时,如果还是觉得上式很难理解, 数方程,在对其求微分,即可得到流体粒子的

11、加速度。如果是均匀流动,只存在迁移加速度;如果是定常流动,那么当地加速度一定为零, 当地加速度和迁移加速度都为零。均匀流动是定常流动的特例。 控制体积法 (3) .定常流动时不考虑速度分布的动量方程 (4) ?mF)?v(v?x12xx ?m?)Fv(v?y22yy(3-1) ?m?)v(Fv?zz2z2 7 此方程大量应用,需牢固掌握。注意此方程的“猫腻”在于如果只有一个出口,质量流?m“。量在上课所讲的而不是v ,v ,v转弯河道”的例子有所阐述。是用出口速度v来计算,zyx动量方程中F包含了表面力、质量力和外界壁面对控制体中流体的作用力, 实际上外界壁面的力(表面力)最终会以压强的形式作

12、用在流体上。在计算中,进出口压强均以表压强来计算。 (5)定常流动时的能量方程 ?22ppvv?1212?)(gz(WQmgzWm?)?(3-2) 21v12s ?22 对单位质量流量的流体,上式则变为: ? 22ppvv1212?q)?(?w?w(?gz?gz)?12s21v ?22(3-3) 工程热力学中稳定流动能量方程则是:?22vv (3-4) 12?q?)?wgz?gz()h?(h?1s221 22 式中,其中的焓等于内能与压强势能(流动功)之和,但此式没有对不同品位的在(3-4)它们是机械可式左边的压强势能、重力势能和动能都是高品位能量,能量进行分离。而(3-3)或者转化即有用能。

13、而由于流体的粘性和漩涡等因素造成的有用能损失,直接应用的能量,传递到外界。注意内能是大量分子的能量,它属于低品位能,或者转化为热量q为内能wv而且管路中的流动不对h, 量。如果流体与外界的热量传输是0,并且常把有用能损失写为ww: 化为水头形式)3-3)式可表述为(式3-4两边同除以g外做功 ,=0,那么(s?22pvpv(3-5) 1212?h)?z?(?z)(? v2211?ggg22g 即有用上式另一重要内涵是压强势能、位置势能、动能和外界轴功之间可以相互转化。也可用于增外界输入轴功可以用于提高出口流体的压强,能之间的相互转化。比如说水泵, 加流体的位置势能。,式包含了初等流体力学中最重

14、要的内容,它是“关键之关键”从某种程度上说, (3-5) 后面第五章中管路水头损失和压书中应用于管流的伯努利方程也是其推论;需要熟练掌握。 强降落之原因,都可以从中获得解释。 (6)理想流体的伯努利方程 22pvvp2121H?z?z?21 ?g2ggg28 单位重量流体 单位质量流体和单位重量流体伯努利方程形式可由上式推得。 上述方程适用条件是理想流体、同一流线和定常流动。对于实际流体,如果流线上两点间距较小,机械能损失可忽略不记,上式也近似成立。伯努利方程中包含了流体动能、位置势能和压强势能之和。考虑机械能损失的伯努利方程可认为是能量方程(3-5)的一个特例。 此章小结:大家在做题过程中可

15、发现,有的题目既可用能量方程做,也可用伯努利方程来做,比如书上虹吸管题。但要注意,用能量方程(动量方程也是)来做时,先要取好控制体和座标系,这样才符合要求,而伯努利方程则相对要简便一些。 第四章 流动相似与量纲分析 .主要概念 (1)几何相似、运动相似和动力相似 (2)基本比例尺:一般取长度比、速度比和密度比, k ,k,k v l 只要有上述三个基本比例尺,那么模型和原型的其他物理量比例皆可由此推得 (3)几个重要的动力相似准则数 F : ?Ne)A. 牛顿数(Ne 22?LV . 在牛顿数的分母中实际中大量应用的升力系数和阻力系数皆属于牛顿数222/但V代替。这里的密度是流体的密度, LV

16、有时也可用面积A代替. 2也可用 F却是物体所受的力。升力和阻力): Re雷诺数 (B. ?VLVL ?Re? ? 在雷诺数, 当粘性力在流动中起重要作用时模型和原型的相似需保证雷诺数相同。代替,如果是平板上方D中的代表对象的特征长度,如果是管内流动,一般用管径代替;速度一般取平均速度或来流速度;密度和粘性系数也的流动,则用平板长度L 是针对流体而不是物体。9 对于是判断层流和湍流的标准。雷诺数的物理意义是惯性效应和粘性效应的比值,左右;而对于平板流动,临界雷诺数则要高得多。2000管内流动,临界雷诺数大约是5)Re10Re1)时,惯性效应的影响可忽略,粘性起主要作用;在高雷诺数(在低雷诺数(

17、而简化在边界层外粘性效应可忽略,下,除在边界层区需同时考虑惯性力和粘性力外, 为理想流动 C. ) Fr弗劳德数( V?FrgL 水库泄洪和船舶兴波阻力等)流动、比如河道(明渠当重力在流动中起重要作用时, 问题,模型和原型的相似需保证弗劳德数相同。 )欧拉数( D. Eu ?p ?Eu 2?V 模型和原型的相似需保证欧拉数相同。但是要注, 当压强在流动中起重要作用时意欧拉数是非定性准则数,是被决定量。比如说对管内流动,在几何相似和运动数一定), Eu/DRe相似的基础上,只要保证数和相对粗糙度相同,而Eu = f(Re, 相同,模型管的流动和原型管的流动就可以认为相似。 ( Ma ):马赫数在

18、超音速流动 可压缩流动) 中极其重要 .马赫数 关键问题2. 流动相似条件(1)在本章一开始提出流动相似条件是保证几何相似、运动相似和受力相似。但后 来流动相似的表述转变为:在几何相似和运动相似的基础,保证起主要作用的相似准则数等同。这两种表述是等价的,因为由受力相似可以推出模型和原型的相似准则数等同。其他书上还给出了更详细的流动相似条件,它主要从流动物理方程(比 NS方程)的角度出发,和上面的表述是等价的。如说在受力相似这一点上,并不一定需要每一种类型的力相似,只要保证其主要作 用的力相似即可。 (2) 模型和原型的受力换算问题这就存在一个如何在做模型实验时, 往往很容易测得模型所受的升力和

19、阻力, 只有在保证模型和原型流动相似的将由模型所受的力推得真实物体所受的力问题。10 基础上,上述推算才建立在可靠的基础上。 由于原型的相似准则数(比如说以Re数为例)一般是已知的,所以模型实验时在先保证几何相似的情况下,由ReRe可找到基本比例尺k ,k,k之间的原模 vl 关系,求得其中的未知量,这样选择所需的流速或者流体类型进行模型实验。Re数相等保证了惯性力和粘性力之比相等,而且现在流动又相似,即可推得惯性力和其他力之比必定相等。 那么模型受力与原型受力之间的关系即可由下式推得: ?FFF22?kkk? 或者vl 2222F?VllV (3) 关于定理 定理从变 为了减轻负担, 在实验

20、中,由于影响某物理量的变量数目常常不少, , 寻求无因次量之间的关系。量之间的量纲联系这一角度出发 定理与模型实验也是紧密相联,上面已经阐述了在某一相似准则数(比如 原型的, Re数)相同的情况下,模型与原型之间力的换算问题。但是实际情况中 数经常是变化的,那么实际物体的阻力又如何变化?Re 我们可以通过模型实验先找出阻力系数与Re的关系,比如说: (Re)fC? D等物理量,那么真实,L数,和,Re 得到了上述关系后,再有真实物体的 物体的阻力即等于:F 2?DA(Re)VF?f(Re)?f D 2?AV 第五章中的莫迪图实际上是由模型(2) 可以这样说定理是中模型实验的深化。 只不过实验得

21、到的,但它之所以能广泛应用于实际管路,就是上述原理。在那里, , /D之间的关系:是寻求Eu数与Re) Re, /D(Re, /D)= f= Eu 而Eu数与压强降有关,压强降实际上就是水头损失的另一种表述方式。 4)无量纲准则数和无量纲方程的物理意义 (为什么要提出阻力系数、升力系数以及雷诺数这些无量纲量,其主要原因在 于两点: 阻力系数与升力系数更准确地反映了力与具体流动、作用对象的关联。(A),但这一阻力是多大面积、多大流速和流体密100N当给出一阻力值,比如说度产生的阻力?这些信息我们一无所知。在流体密度和流速相同的前提下,22的物体(外星(正常世界的人)与迎风面积为迎风面积为1m的物

22、体0.01 m11 小人,比较奇怪的身体形状)所受的阻力均为100N, 从力的数值看,并无差异,但最终的“效果”却是外星人被吹跑了。 (注:外星小人之所以会受这么大的阻力,最主要原因在于身体形状很奇怪,学完流体力学后,大家要清楚一点:在同样的迎风面积下,方形的物体总比圆形的物体所受的阻力大,流线形的物体阻力最小) (B)雷诺数无量纲量则反映了流体微团在流动过程中所受的粘性力与惯性力的相对大小,以管内流动为例,对流体流动形态起决定作用的主要是惯性力与粘性力(压力降是被决定量),当惯性效应比较大时,流体微团速度大小变化和方向变化的倾向就大,流动会变得更“无序”一些,比如说管内湍流流动;反之当粘性效

23、应比较大时,要想改变流体微团的运动状态则非常困难,流动会表现得更“有序”一些,比如说管内层流流动。 因此雷诺数(Re)最关键的地方就是与“流动形态”直接联系。它综合了看似毫无联系的四个变量,V, D, 的整体影响。 理解了无量纲量的物理意义,无量纲方程就变得好理解一些,比如说物体的阻力与以下四个变量有联系: ?),f(L,V?F D经定理无量纲化后变为: (Re V 管内流动与沿程损失第五章 主要概念. (1)沿程损失与局部损失2 VL ?h沿程能量损失 fD2g 2 V?h局部能量损失 jj 2gh?总损失h?h jfw 层流与湍流 (2) (3)临界雷诺数 粘性应力与雷诺应力(4) 水力光

24、滑与水力粗糙 (5) (6)气穴与气蚀现象 12 2. 关键问题 (1)首先要清楚的是无论管内层流流动和湍流流动,在完全发展段后,都是边界层从四周汇合而成。可以这样说,管内流动即是边界层流动。管内流动的能量损失,并不是说能量真的损失了,能量总是守恒的,真正损失的是有用能,恰如摩擦损失,有用能损失总是常伴的。 (2) 这一章中的管内流动,流体都是充满管路的,常被称为有压管流。当管路水平和管径不变,外界轴功输入w=0时, 那么V=V ,z=z ,由(3-5)式可得: 221s1pp 21?hw ?gg 有用能损失是压强势能降低这种形式表现出来。然后把压强降“折合”成水柱大小,即水头损失。如果不是水

25、平均匀管路,能量之间的转化要通过能量方程来分析。见书中126页例题5-3 实际中,还存在流体并非充满管路的情况,这时流体的驱动就来源于重力,而不是压强差。当流体没有充满管路,即两端与大气相通,那么p=p=p, 而V=V又无2, a211轴功输入w=0, 由(3-5)式, 则必有: sh?z?z 21w 有用能损失是位置势能降低这种形式表现出来。 (3)大家在看这一章时容易觉得“无头绪”, 组织这一章的线路有两条:(1)通过量纲分析方程直接得到Moody图, 这一线路容易理解, 但对流动特性并不了解; (2)对流动特性有一大致的了解, 由剪切应力分布得到速度分布, 再由速度分布得到流量与压强降落

26、的关系, 最后推得沿程损失系数与无因次量Re或相对粗糙度的关系。由于湍流中剪切应力涉及到附加应力问题,所以普朗特创立了边界层模型来对之进行分析。 13 截面上不同区域剪切应力(粘性应力和附加应力)对于完全发展段的管内湍流流动(4), 分布情况,粘性应力和附加应力机理图的分区情况,对于湍流流动,其光滑管区、粗糙管过渡区和粗糙管阻力平(5)Moody 方区沿程损失系数的主要影响因素这一主角通常是由水泵、水塔、压气机(6)管内流动有用能损失最终一定要有“买单者”,或者地球(提供位置势能)来客串。如果水泵是主要的能量来源,对于一定质量流量 的管路,水泵消耗的功率:?W?mpgh?q? vw 沿程机械能

27、损失和局部机械能损失(7) 17中可看得很清楚。 局部机械能损失的影响并非是局部的,在习题 NS方程组与边界层流动第六章 主要概念. 平板边界层的主要特征(1) 压差阻力与摩擦阻力(2); 形成剪切应力而产生的由于流体具有粘性,而在物体表面具有速度梯度, 摩擦阻力:. 它的计算方法可由边界层动量方程计算得到 摩擦阻力是粘性的直接效果, ?dAx)F?(? 摩擦阻力 .比如下图压差阻力:由于物体表面前后压强分布不对称造成的阻力 dAFp? 投影压差阻力因为物体表面的压强分布与粘性也有很大关实际上压差阻力是粘性的简接效果,14 系。正是由于流体有粘性,形成了边界层,如果边界层发生分离,会形成尾涡区

28、, 使该区域压强降低,造成压差阻力的增大。如上而摩擦阻力只占很小的部分。汽车在行驶时所受的主要空气阻力是压差阻力,那么如何来防止边界层分压差阻力的产生主要是由于边界层分离现象造成,所述,在早压差阻力和物体的形状也有很大的关系,离就成为设计中主要需考虑的因素。就很容易使气流发生分离,形成后部很大的尾期的汽车设计中,形状是方盒状的, 涡区,造成极大的压差阻力。 阻力系数(3) 边界层分离现象(4)逆压梯度的存在是最重要的条件,流体从压强低的地方往压强高的地方流动,其动 如果这种现象发生在边界层最终发生逆流。能会不断消耗在流动功上,最终流体会停下来,注意边界层里的流体速度比主流速度即边界层分离现象。

29、里,就会出现边界层流体的逆流, 低,因而动能也小,发生逆流的可能性也大。因而大家理解边并不能详细讲述物体表面在流动时的压强分布,在这里由于课时关系,对压强分布有兴趣的同学可自己查阅参考书也正界层分离现象和失阻现象会有一定的困难,因而高尔夫球表面和网球表面都故意使得阻力系数小,是湍流边界层可以防止边界层分离, 弄得凹凸不平,这样它们可以飞得更远。 关键问题2. 方程组形式,包括连续方程与动量方程,但不需要死记,无因次化的过程要熟悉NS (1) NS方程组清楚,并结合边界层特点进行各项数量级的估计从而简化 边界层动量积分方程需要掌握,并用此方法来分析平板层流边界层的摩擦阻力系数。 (2) 图(总阻

30、力系数图),(平板摩擦阻力系数图),图-21 (3)熟悉通过阻力系数表图8-14 (总阻力系数图)来计算平板、圆柱和圆球的阻力方法 8-22 阻力系数,阻力大小即是:Re数对应的 实际上一旦查得不同 FD(Re)f?C2 ?A?f?FV(Re)D 2D?AV b是板宽bL , 是板长,对于平板: 是圆柱的横向长度。是圆柱直径,b, Db对于圆柱:2/4 =DA 对于圆球: 4()减阻的措施:减小摩擦阻力:由于层流边界层摩擦阻力系数比湍流边界层来得小,所以需尽 可能保持层流状态,飞机设计中有一种层流翼型,它通过机翼的最大厚度点尽可能后移来保持层流边界层(飞机飞行中摩擦15 阻力很重要) 减小压差

31、阻力:由于湍流边界层可延缓边界层分离,使得压差阻力比层流边界 层小,因而在压差阻力占主要成分的现象中,需尽可能维持湍流边界层,不让气流分离,而且压差阻力也与物体形状有很大关系,因而工程设计中就有了圆头尖尾流线型设计的概念,使 得分离点尽可能后移。 两者看上去是矛盾的,那就要看现实中那种阻力占主要作用,就想办法消除这种阻力。 典型例题分析: ,当水枪水平出口直径d=7mm(1)消防水枪前端结构如图所示,水枪进口直径d=15mm, 013 , 工作时,工作喷水量Q=0.0027 m试求连接喷头和消火栓之螺栓所受的力。/s 首先采用伯努利方程和连续方程求出喷头上游的压强p解 1 再用控制体积法计算螺

32、栓受力。 V A10 V A01 yb x p1 Fb 根据喷嘴进、出口和截面之间的伯努利方程,可得出1 ) (1 22?)(VV?pp?1010 23 ,因此进、出口速度分别为已知体积流量为sm?q0.0027/vq0027.0 mm/sV?.315?1 2A?015()/4?0.1q00270.m m/s.70?V2?0 2A?007.0)(/4?016 p?p?0(表压) 由于出口压强是大气压,动量方程需用表压计算,所以a0则由方程式(1),可得 1226Pa?10?22.?15.335?p)?1000?(70. 1 2x方向动量方程:控制体所受合力,如上图所示,对图中虚线所示控制体,列

33、 ?F?F?pV(?V)A?m?101x1b ?)?Vq(?V1V0 将所有的数据代入,得出:?q(V?VF?pA?)1b1V10?26?1000?0.0027?(70.015.2?15.3)35?2.?10?0 42.148415?.1?N266?.8 (2) 一个亚音速机翼在实验室风洞中进行实验,以下是所获得的实验数据:模型在流速2。试将数据绘制成升力系数C10m/s的标准大气压中进行实验,模型机翼的面积是0.1 mL2 的原型机翼,在空气速度为100m/s和迎角为的关系表;对于一个面积为10m5与迎角3 并且已知升力系数C只和迎角(时的升力是多少?空气密度是1.29 kg/m无因次量)有

34、L关,即下式成立: ?)(?fC L 0 45.5 54.6 63.7 54.6 36.4 N 升力()?2505201015 迎角 ? 的关系表(1)解:欲求模型升力系数与迎角 应用升力系数公式 :FL?C L 2?AV17 32 , A=0.1 m=10 m/s, =1.29 kg/m 代入V?的新表:可容易计算得到下面升力系数与迎角 升力系数 0 3.52 4.23 4.97 4.23 2.82 ?2552010150 迎角 2 的原型机翼在时所受的升力现在需进一步计算(2)10m? 由于,这意味着只要迎角相同,升力系数也相同)?Cf(L?C?C 原原L模模LFF 模原? 22?VV21

35、12AA21 22?,所以上式化为:由于空气密度 212AV22F?F 原 模2AV1121001001010000?5?45.F? 模21.0100110N?455000?5455000N 的升力是 原型飞机 (3)用于测试新阀门压降的设备,水从容器通过锐边入口进入管子,钢管的内径均为50mm,3/h,若在给定流量下,水银差压计的示数为150 mm,(1)12m用水泵保持稳定的流量求水通过阀门的压损失;(2)计算水通过阀门的局部损失系数;(3)计算通过阀门前水的计示压强;(4)不计水泵损失,求通过该系统的总损失,并计算水泵给水的功率? 解:(1)水通过阀门的压强损失 18 3?9.8?100

36、?(.?15)gh?12.6P水水银 Pa18522? (2) 水通过阀门的局部损失系数 q12/3600 vs/698mV?1?. ?143.2205.?d0 44 局部损失系数是: 2 ?VP 12.82 =K可推得?Km m?g2g水 (3) 计算水通过阀门前的计示压强 由于有沿程损失和进口损失,所以在计算计示压强前需考虑这一点 : 先判断管内流动状态3?1.698?VD100.05 84478?Re? 3?101.005? mm这是湍流流动。由于管路是钢管,查得管壁粗糙度是0.19 这样可算得相对粗糙度为:3?0038.?0/019/d?0.?10.05 ?d/? :查数,由ReMoo

37、dy图可得沿程损失系数029.?0 因而沿程损失和进口损失为:2 Vl?)?h(K?inw g2d269841. ?5)?(0.029?0. 89.005.2?米水柱.0415?, w=0 q=0, 由能量方程可得:这里s22ppVV 1221?h?z(?)?)?z?( w1212?g2g2gg 19 pz=z=0 =0, V而= =1.698 m/s, =1.0, H=0, V2 12, 1211 0那么计示压强为: 12?V?H?h)p?g( 220w2 2698.1000?1.415)?05?10009.8?(1.8?0?12132Pa(4)该系统总的损失(不计图上的弯管损失)为: 2

38、VL ?K)h?( inwd2g2698.5114?(0.029?12.86?0.5)? 8.?90.052?3.12米水柱水泵的功率由下式计算: ?ghW?mw 123)?H(h?H?10?9.8?1f0 06033?0.0033?9.8?(3.?1012?1.8?2) ?107.7kW ?623(4) /10ms?v5?的轻柴油通过管道从一油池输送到,运动粘度密度为m/?860kg?0.45mm5,绝对粗糙度储油库内。铸铁管长,要求质量流量mL?150hkgq?10/m5,只计算沿程损失,出油端比吸入端高,假设油泵能够产生的压强Pa10?.?P343m?25Hi试求必需的管道直径? 20

39、21H 泵21 解:如图所示,列能量方程 截面(出口端),2-2取1-122 ppVV 1122?h(?z)(?z)? w2211?g2gg2g 2-2截面面积相同,所以平均速度相同由于1-1截面, 那么上式即可化为:pp12h?z()(?z?)? w12 ?gg PP 21h?hw ?gg25v?03.43?10L ?25 g82D860?9.2 VL (1) 所以 ?h6915?.?w Dg2q 的关系是 将质量流量与V m? (2) 2 ?d?qV?AV?m 421 : 移项可得(1)式,代入2q?8L5m?d 由公式 22?ghw5102)150?(8? 3600?8605? (3)

40、0008.?d0? 269.98?153.14.? q 可得:数公式, 的关系式(2)式代入将以质量流量Re与Vm5q410?4m ?Re? 6?DV?D?3600?3.14?5?10860482291400?10 ? D3600D3.14?5?m11?0.02?0.D 试取:Re数和/D,由(3)式可推得,那么对应此管径的?004.?024433Re? D?029.?0 Moody图可得新的查 0.118D =那么由(3)式推得新的管径 ?00380.?73Re?697 D =0.12m D基本已符合情况 : 已知流体的流动速度分布为5.?j)?y?t?u(x?t)?i( M(-1,1)点的

41、流线试求t=0时过 : 此题给定的实际上是欧拉描述解: t?u?x?x ?uty?y: 即有, 流线需满足其上每一点的速度方向与切线方向相一致22 dxdy ? x?t?y?t 需求t=0时的流线,代入上式: dydx ? x?y 两边求积分: lnx?lny?C?ln(xy)?C xy = 即: C0 这是t=0时流场的流线簇。 : , 那么代入上式可得由于要求的流线需过M(-1,1)点xy 1 = 计算3m/s的等加速度水平运动,现以静止液面离箱底矩形木箱长6. 如图所示,3米,1.5米, 以及作用在箱底的最大压强和最小压用反三角函数表示即可)此时液面与水平面的夹角(3) 强。(=1000

42、kg/m流体密度 2 3m/s 1.5m 1.5m 1.5m 23 解:由于液面(自由面)与合质量力的方向相垂直,所以只要求出合质量力的方向即可 推得角的大小: a g : 由此图可知 a3?0tg.?306 g9.8 为了求箱底最大压强和最小压强,需了解几何关系,计算如下: 0.46m 0.46m 1.5m B A 1.5m 1.5m 由于箱底压强分布(不计入大气压强)可用下式计算: ?ghp? 这里h是淹深,上式意味着箱底压强分布是呈线性分布,左端A点最大,右端B点最小: A点的淹深可由上述几何关系图算得: h=1.5 + 0.46=1.96m A B点的淹深可由上述几何关系图算得: h=

43、1.5 - 0.46 =1.04m B 这样即可算得箱底最大压强: ?gh?1000?9.8?p?1.96?19208Pa AA: 箱底最小压强 ?Pa?10192041891000?pgh?.?. BB 24 .流场计算 7画流线和迹线方程; (2)), 试求:(1)k已知流场为: u=kx, v=ky, w=0, 式中为常数(k大于0)? 出流场图(四个象限都标出 由题意可得:解:(1)dydxC?xy ky?kx 即为流线方程,由于是定常流动,所以流线方程也是迹线方程。 :2)流场如下图所示 ( 四个象限都标(流线和迹线方程; (2)画出流场图:8.已知流场为: u= - y, v= 2

44、x, w=0, 试求(1)? 出 1)由题意可得:解:(dydx22C?y?x?2 x?y2 , 即为流线方程由于是定常流动,所以流线方程也是迹线方程。 )( 2流场如下图所示:25 y x 9.管路末端, 水塔的蓄水深度H=5m水塔供水管路 如图所示为水塔供水管路系统,h=6m,1试应用考虑损失的伯努利方程估算管路的水头 水阀全开时,进入空气的平均流速是10m/s, 损失(单位重量) h1 :解:由考虑损失的伯努利方程(水头形式)22ppVV2112h?z?z f12 ?gggg2221 由题意可知: ?z?11m?VV?010m/sppz? 22121211 代入前式可得:2V1002h?

45、(z?z)?m?11?5.86 21f 22?9.826 水柱管路的损失为5.86 m 弯管受力分析10.0入口,d=7.5cm渐缩弯管平放在水平面上,进出口管直径分别为d=15cm连续管系中的90,2134 ,大气压强 )表压强。如不计能量损失,=1000 处水平均流速V=1m/s, p=610kg/mPa(115 Pa为10,试求支撑弯管在其位置所需的合力 y x 解:取管壁和进出口边界作为控制体 由于不考虑能量损失,由伯努利方程求得出口压强: (1) 22ppVV2211?z?z 21 ?gg2g2g ,可得: 由于z=z 2132pVVp2121? ?22=4m/s V 由题意可得:

46、22222VV41421?)P?P?)?6?10?1000(?(?12 22224Pa10?5.25?4 10Pa 因此出口表压力为:5.25 2)由于不考虑管内流速的分布,对水平方向列动量方程:(?A?p?VmV(?)F 1x21inxx27 : 由此可得 ?24222?15.?110?6?F?AV?pA?1000?0.150 inx1x 44 。坐标负方向) X方向管路对流体的作用力方向向左(X 对垂直方向列动量方程:?mpA?(V?V)F? 2outy1y2y?22224?075.?4?5.25?100F?AVA?p?1000?.?0075 out2yy44 (Y坐标正方向)。Y方向管路

47、对流体的作用力方向向上 11. 水库清空问题 要提前清空水库,这就需估算完全清空的时间。现做模水库在洪水来临时,为了大坝安全,模型水库完全放空需花的时间是1/300型对其过程进行模拟,如果模型尺寸是真实水库的 ?10min,试求真实水库完全放空所需的时间 数相同解:在这里起主要作用的是重力相似准则FrlVV1221?k? 即 根据题意已知:, l 300lglgl121V12?k? 因此可推得模型与原型的速度比是: v 300V1k1l?k? 由此可得时间相似比是: t k300vt?173.2min 那么真实水库放空水库的时间为: 12. 船舶波阻测试 现做一个小船模在水池中进行试验, 在实验时需保证Fr数相同,船模和原型的比例是1:40, 已知船模的牵引速度为0.5m/s, 测得模型的波阻是1.0N。如果需保证流动相似,试求原型的速度和波阻。 28 数相同可求出原型与模型的速度比:解:由FrVVVL1211?Fr?Fr?4021 LVgLgL 2221V?0./ms5*2*10?3.1621 那么力的比尺为: 22k?kk?1600?40?64000 LFV 原型所受的阻力为: F=64000*1.0=6400

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论