版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数字推理类题型分析及解题技巧总结 八类数字推理题型分析及解题技巧 一、题型分析。 所谓数字推理,就是在每道试题中呈现一组按某种规律排列的数列,但这一数列中有意地空缺了一项,要求考生对这一数列进行观察和分析,找出数列的排列规律,从而根据规律推导出空缺项应填的数字,然后在供选择的答案中找出应选的一项,在答题纸上将相应题号下的选项涂黑。 二、考点分析 数量关系测验主要是测验考生对数量关系的理解与计算的能力,体现了一个人抽象思维的发展水平。在行政职业能力测验中,数量关系测验主要是从数字推理和数学运算两个角度来考查考生对数量关系的理解能力和反应速度。 数量关系测验含有速度与难度的双重性质。在速度方面,要
2、求考生反应灵活活,思维敏捷;在难度方面,其所涉及的数学知识或原理都不超过小学与初中水平,甚至多数是小学水平。如果时间充足,获得正确答案是不成问题的。但在一定的时间限制下,要求考生答题既快又准,这样,个人之间的能力差异就显现出来了。可见,该测验难点并不在于数字与计算上,而在于对规律与方法的发现和把握上,它实际测查的是个人的抽象思维能力。因此,解答数量关系测验题不仅要求考生具有数字的直觉能力,还需要具有判断、分析、推理、运算等能力。 三、解题技巧 在作答这种数字推理的试题时,反应要快,既要利用直觉,还要掌握恰当的方法。首先找出两相邻数字(特别是第一、第二个)之间的关系,迅速将这种关系类推到下两个相
3、邻数字中去,若还存在这种关系,就说明找到了规律,可以直接地推导出答案;假如被否定,应该马上改变思考方向和角度,提出另一种数量关系假设。如此反复,直到找到规律为止。有时也可以从后面往前面推,或“中间开发”往两边推,都是较为有效的。答这类试题的关键是找出数字排列时所依据的某种规律,通过相邻两数字间关系的两两比较就会很快找到共同特征,即规律。规律被找出来了,答案自然就出来了。在进行此项测验时,必然会涉及到许多计算,这时,要尽量多用心算,少用笔算或不用笔算。 下面我们分类列举一些比较典型或具有代表性的试题,它们是经常出现在数字推理测验中的,熟知并掌握它们的应答思路与技巧,对提高成绩很有帮助。但需要指出
4、的是,数字排列的方式(规律)是多种多样的,限于篇幅,我们不可能穷尽所有的排列方式,只是选择了一些最基本、最典型、最常见的数字排列规律,希望考生在此基础上熟练掌握,灵活运用,达到举一反三的效果。实际上,即使一些表面看起来很复杂的排列现象,只要我们对其进行细致分析和研究,就会发现,它们也不过是由一些简单的排列规律复合而成的。只要掌握它们的排列规律,善于开动脑筋,就会获得理想效果。 另外还要补充说明一点,近年来数字推理题的趋势是越来越难。因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来答难题。这种处理不但节省了时间,保证了容易题目的得分率,甚至会对难题的解答有所帮助。 一、等差数
5、列及其变式 【例题1】2,5,8,() A、10;B、11;C、12;D、13 个数字可以看出这是一个典型的等差数列,即后面的数字与前面3【解答】从上题的前数字之间的差等于一个常数。题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B。 【例题2】3,4,6,9,(),18 A、11;B、12;C、13;D、14 【解答】答案为C。这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目。顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,。显然
6、,括号内的数字应填13。在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式。 例题3:1,4,7,10,13,() A.14B.15C.16D.17 答案为C。我们很容易从中发现相邻两个数字之间的差是一个常数3,所以括号中的数字应为16。等差数列是数字推理测验中排列数字的常见规律之一。 二、等比数列及其变式 【例题4】3,9,27,81,() A、243;B、342;C、433;D、135 【解答】答案为A。这也是一种最基本的排列方式,等比数列。其特点为相邻两个数字之间的商是一个常数。该题中后项与前项相除得数均为3,故括号内的数字应填243
7、。 【例题5】8,8,12,24,60,() A、90;B、120;C、180;D、240 。该题难度较大,可以视为等比数列的一个变形。题目中相邻两个数C【解答】答案为字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的:1,1.5,2,2.5,3,因此括号内的数字应为603=180。这种规律对于没有类似实践经验的应试者往往很难想到。我们在这里作为例题专门加以强调。该题是1997年中央国家机关录用大学毕业生考试的原题。 【例题6】8,14,26,50,() A、76;B、98;C、100;D、104 【解答】答案为B。这也是一道等比数列的变式,前后两项不是直接的比例关系,而
8、是中间绕了一个弯,前一项的2倍减2之后得到后一项。故括号内的数字应为502-2=98。 三、等差与等比混合式 【例题7】5,4,10,8,15,16,(),() A、20,18;B、18,32;C、20,32;D、18,32 【解答】此题是一道典型的等差、等比数列的混合题。其中奇数项是以5为首项、等差为5的等差数列,偶数项是以4为首项、等比为2的等比数列。这样一来答案就可以容易得知是C。这种题型的灵活度高,可以随意地拆加或重新组合,可以说是在等比和等差数列当中的最有难度的一种题型。 四、求和相加式与求差相减式 【例题8】34,35,69,104,() A、138;B、139;C、173;D、1
9、79 【解答】答案为C。观察数字的前三项,发现有这样一个规律,第一项与第二项相加等,得到35+69=104,这种假想的规律迅速在下一个数字中进行检验,34+35=69于第三项,了验证,说明假设的规律正确,以此规律得到该题的正确答案为173。在数字推理测验中,前两项或几项的和等于后一项是数字排列的又一重要规律。 【例题9】5,3,2,1,1,() A、-3;B、-2;C、0;D、2 【解答】这题与上题同属一个类型,有点不同的是上题是相加形式的,而这题属于相减形式,即第一项5与第二项3的差等于第三项2,第四项又是第二项和第三项之差所以,第四项和第五项之差就是未知项,即1-1=0,故答案为C。 五、
10、求积相乘式与求商相除式 【例题10】2,5,10,50,() A、100;B、200;C、250;D、500 【解答】这是一道相乘形式的题,由观察可知这个数列中的第三项10等于第一、第二项之积,第四项则是第二、第三两项之积,可知未知项应该是第三、第四项之积,故答案应为D。 【例题11】100,50,2,25,() A、1;B、3;C、2/25;D、2/5 【解答】这个数列则是相除形式的数列,即后一项是前两项之比,所以未知项应该是2/25,即选C。 六、求平方数及其变式 【例题12】1,4,9,(),25,36 16 、D;20、C;14、B;10、A【解答】答案为D。这是一道比较简单的试题,直
11、觉力强的考生马上就可以作出这样的反应,第一个数字是1的平方,第二个数字是2的平方,第三个数字是3的平方,第五和第六个数字分别是5、6的平方,所以第四个数字必定是4的平方。对于这类问题,要想迅速作出反应,熟练掌握一些数字的平方得数是很有必要的。对于这种题,考生应熟练掌握一些数字的平方得数。如: 10的平方=100 11的平方=121 12的平方=144 13的平方=169 14的平方=196 15的平方=225 【例题13】66,83,102,123,() A、144;B、145;C、146;D、147 【解答】答案为C。这是一道平方型数列的变式,其规律是8,9,10,11,的平方后再加2,故括
12、号内的数字应为12的平方再加2,得146。这种在平方数列基础上加减乘除一个常数或有规律的数列,初看起来显得理不出头绪,不知从哪里下手,但只要把握住平方规律,问题就可以划繁为简了。 七、求立方数及其变式 【例题14】1,8,27,() A、36;B、64;C、72;D、81 。64的立方,故括号内应填的数字是4,3,2,1。各项分别是B【解答】答案为【例题15】0,6,24,60,120,() A、186;B、210;C、220;D、226 【解答】答案为B。这也是一道比较有难度的题目,但如果你能想到它是立方型的变式,问题也就解决了一半,至少找到了解决问题的突破口,这道题的规律是:第一个数是1的
13、立方减1,第二个数是2的立方减2,第三个数是3的立方减3,第四个数是4的立方减4,依此类推,空格处应为6的立方减6,即210。 八、双重数列 【例题16】257,178,259,173,261,168,263,() A、275;B、279;C、164;D、163 【解答】答案为D。通过考察数字排列的特征,我们会发现,第一个数较大,第二个数较小,第三个数较大,第四个数较小,。也就是说,奇数项的都是大数,而偶数项的都是小数。可以判断,这是两项数列交替排列在一起而形成的一种排列方式。在这类题目中,规律不能在邻项之间寻找,而必须在隔项中寻找。我们可以看到,奇数项是257,259,261,263,是一种
14、等差数列的排列方式。而偶数项是178,173,168,(),也是一个等差数列,所以括号中的数应为168-5=163。顺便说一下,该题中的两个数列都是以等差数列的规律排列,但也有一些题目中两个数列是按不同规律排列的,不过题目的实质没有变化。 两个数列交替排列在一列数字中,也是数字推理测验中一种较常见的形式。只有当你把这一列数字判断为多组数列交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经80%了。需要补充说明的是,近年来数字推理题的趋势越来越难,因此, 遇到难题时可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。 二、解题技巧 数字推理题难度较大,但并非无规律可循,了解和
15、掌握一定的方法和技巧,对解答数字推理问题大有帮助。 1、快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。 2、推导规律时,往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算。 3、空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导。 4、若自己一时难以找出规律,可用常见的规律来“对号入座”,加以验证。常见的排列规律有: (1)奇偶数规
16、律:各个数都是奇数(单数)或偶数(双数); (2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减。 (3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减; 如:2、4、8、16、32、64、() 这是一个“公比”为2(即相邻数之间的比值为2)的等比数列,空缺项应为128。 (4)二级等差:相邻数之间的差或比构成了一个等差数列; 如:4、2、2、3、6、15 。2.5、2、1.5、1、0.5相邻数之间的比是一个等差数列,依次为:(5)二级等比数列:相邻数之间的差或比构成一个等比数理; 如:0、1、3、7、15、31、() 相邻数之间的差是一个等比数列,依次为1、2、4、8、16,
17、空缺项应为63。 (6)加法规律:前两个数之和等于第三个数,如例题23; (7)减法规律:前两个数之差等于第三个数; 如:5、3、2、1、1、0、1、() 相邻数之差等于第三个数,空缺项应为-1。 (8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数; (9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含; 如:2、3、10、15、26、35、() (10)混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列。 如:1、2、6、15、31、() 相邻数之间的差是完全平方序列,依次为1、4、9、16,空缺项应为31+25=5
18、6。 20种数字推理试题解答规律总结 数字推理主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。在实际解题过程中,根据相邻数之间的关系分为两大类: 一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律: 1、相邻两个数加、减、乘、除等于第三数 、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数23、等差数列:数列中各个数字成等差数列 4、二级等差:数列中相邻两个数相减后的差值成等差数列 5、等比数列:数列中相邻两个数的比值相等 6、二级等比:数列中相邻两个数相减后的差值成等比数列 7、前一个数的平方等于第二个
19、数 8、前一个数的平方再加或者减一个常数等于第二个数; 9、前一个数乘一个倍数加减一个常数等于第二个数; 10、隔项数列:数列相隔两项呈现一定规律, 11、全奇、全偶数列 12、排序数列 二、数列中每一个数字本身构成特点形成各个数字之间的规律。 1、数列中每一个数字都是n的平方构成或者是n的平方加减一个常数构成,或者是n的平方加减n构成 2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n 3、数列中每一个数字都是n的倍数加减一个常数。 以上是数字推理的一些基本规律,必须掌握。但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?这就需要在对各种题型认真练习
20、的基础上,应逐步形成自己的一套解题思路和技巧。 第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答 第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。 第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。 当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案 难度较大的数列规律: 1、等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24
21、,70,208,622,规律为后一项是前一项的三倍减2。 2、深一些的如,各数之间的差有规律,如1、2、5、10、17。它们之间的差为1、3、5、7,成等差数列。这些规律还有差之间成等比之类。各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。 3、看各数的大小组合规律,作出合理的分组。如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。所以7*7-9=40,9*9-7=74,40*40-
22、74=1526,74*74-40=5436,这就是规律。 4、如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数7+1410+119+12。首尾关系经常被忽略,但又是很简单的规律。B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。 5、各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服,。这6的立方减6,5的立方减5,4的立方减4,3的立方减3,2的立方减2它们依次是组数比较巧的是都是6的倍数,容易导入歧途。 6、看大小不能看出来的,就要看
23、数的特征了。如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如解答:256,269,286,302,(),2+5+6132+6+9172+8+6163+0+25,256+13269、269+17286、286+16302下一个数为302+5307。 7、再复杂一点,如0、1、3、8、21、55,这组数的规律是b3ac,即相邻3个数之间才能看出规律,这算最简单的一种,更复杂数列也用把前面介绍方法深化后来找出规律。 8、分数之间的规律,就是数字规律的进一步演化,分子一样,就从分母上找规律;或
24、者第一个数的分母和第二个数的分子有衔接关系。而且第一个数如果不是分数,往往要看成分数,如2就要看成2/1。 数字推理题经常不能在正常时间内完成,考试时也要抱着先易后难的态度。应用题个人觉得难度和小学奥数程度差不多,各位感觉自己有困难的可以看看这方面的书,还是有很多有趣、快捷的解题方法做参考。国家公务员考试中数学计算题分值是最高的,一分一题,而且题量较大,所以很值得重视 1、中间数等于两边数的乘积,这种规律往往出现在带分数的数列中,且容易忽略,如1/2、1/6、1/3、2、6、3、1/2 2、数的平方或立方加减一个常数,常数往往是1,这种题要求对数的平方数和立方数比较熟悉。如看到2、5、10、1
25、7,就应该想到是1、2、3、4的平方加1;如看到0、7、26、63,就要想到是1、2、3、4的立方减1。对平方数,个人觉得熟悉120就够了,对于立方数,熟悉110就够了,而且涉及到平方、立方的数列往往数的跨度比较大,而且间距因为最近各地公务员考试中较多采用这种类CB的平方A、3递增,且递增速度较快型的题,所以单独列出来 如数列5,10,15,85,140,7085 如数列5,6,19,17,344,55 如数列5,15,10,215,115 这种数列后面经常会出现一个负数,所以看到前面都是正数,后面突然出现一个负数,就考虑这个规律看看 4、奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项
26、是另一个规律,互相成干扰项 如数列1,8,9,64,25,216 奇数位1、9、25分别是1、3、5的平方 偶数位8、64、216是2、4、6的立方 5、后数是前面各数之各,这种数列的特征是从第三个数开始,呈2倍关系如数列:1、2、3、6、12、24 由于后面的数呈2倍关系,所以容易造成误解! 数量关系的5个解题原则 1、心算胜于笔算 、先易后难23、数字推理题中要由表及里,重点是逻辑关系的把握 4、质量重于速度 5、运用速算方法,事半功倍 二、数量关系的实例 (注:换3种方法不行就算难题,暂时放弃) 1、自然数列规律4,5,6,7,() A、8 B、9 C、10 D、11 2、奇数规律 略
27、3、偶数规律 略 4、等差数列 略 5、二级等差数列,相邻数之间的差构成等差数列。(分量可能较大) 2,3,5,8,() A、8 B、9 C、15 D、12答案D 6、等差数列的变式3,4,6,9,(),18 A、11 B、13 C、12 D、18答案B 7、等比数列,相邻两数的比值相等,整个数列递增或者递减2,4,8, (),1632 答案 、二级等比数列,相邻数字之间的比构成等比数列8 (),216,18,3,1 A、1023 B、1892 C、243 D、5184答案D 9、等比数列的变式 3,5,9,17,() A、23 B、33 C、43 D、25答案B 10、加法数列,前两数字之和
28、等于第三数 1,0,1,1,2,(),5 A、4 B、3 C、5 D、7答案B 难一些的:0,1,1,2,4,8,(),32 A、14 B、16 C、12 D、18答案B (后面的数字为前面所有项的和) 11、减法数列,前两数字之差等于第三数 5,3,2,1,(),0 A、1 B、-1 C、-2 D、-3答案A 难一些的: 60,67,53,74,() A、56 B、64 C、46 D、84答案C 12、乘法数列,后项为前二项之积 1,2,2,4,8,() A、12 B、15 C、32 D、30答案C 13、除法数列,后项为前二项之商 8,4,2,2,1,() D 答案2、D 5、C 4、B
29、3、A 14、平方数列数列中的各数为一个数列的平方(或明或暗) 1,4,9,16,() A、23 B、24 C、25 D、26答案C 经常考的变式: 2,3,10,15,26,35,() A、40 B、50 C、55 D、60答案B (1平方加1,2平方减1,3平方加1,4平方减1。) 15、立方数列数列中的各数为一个数列的立方(或明或暗) 1,8,27,64,() A、100 B、115 C、120 D、125答案D 立方变式: 3,10,29,66,() A、123 B、124 C、126 D、127答案D (N的立方加2) 16、质数系列规律 2,3,5,7,() A、8 B、9 C、1
30、0 D、11答案D 17、质数系列的变式 20,22,25,30,37,() A、40 B、42 C、48 D、50答案C (前项加质数,20XX年的考题) 、双重数列,分为奇数项与偶数项18257,178,259,173,261,168,263() A、275 B、279 C、164 D、163答案D 19、混合型数列,由上述两种以上的规律组成的数列 1,2,6,15,31,() A、45 B、50 C、56 D、60答案C 1/19,38,1/76,152,1/304,() A、380 B、608 C、719 D、1216答案B 6,14,30,62,() A、85 B、92 C、126
31、D、250答案C 前项2倍加2 20、题目中出现大数的规律 3,7,47,2207,() A、4414 B、6621 C、8828 D、4870847答案D 这样的题目中间后面的数字大,用等差的方法显然不行,我们应该想到平方或者立方,此题目为前项的平方减2 21、纯数字排列题目 9,98,987,9876,() A、9875 B、98765 C、98764 D、98763答案 22、除法规律加上加法规律 5,17,21,25,() A、30 B、31 C、32 D、34答案B 1 余2除23、减法加等比的规律 4,7,16,43,124,() A、367 B、248 C、372 D、496答案
32、A 24、加法加等比规律 3,6,21,60,() A、183 B、189 C、190 D、243答案A 前后两个数字相加为:9,27,81,成为公比为3的数列。 81*3-54=189 25、立方加加法规律 2,9,28,65,() A、128 B、124 C、126 D、129答案C 5的立方加1=129 27、双重数列加上加法(或者减法)规律 1,28,4,65,9,126,16,() A、125 B、216 C、217 D、218答案C 28=3的立方加1 28、整数加小数的规律 1.1,3.2,4.3,7.4,11.5,() A、18.6 B、15.5 C、15.6 D、15.8 答
33、案A。将整数和小数分开来看,小数为12345,整数为前一项数字的和 数学运算举例1、凑整数法 5.2+13.6+3.8+6.4 2、观察尾数法 1111+6789+7897 A、25797 B、24798 C、25698 D、25678答案 3、22的平方+23的平方+25的平方24的平方 A、1061 B、1062 C、1063 D、1064答案 (次题只需要计算-2的平方+3的平方+5的平方4的平方) 4、利用基准数法 1997+1998+1999+2000+2001 5、+1法 一条长廊长20米,每隔2米放置一盆花,一共需要多少盆花? A、10 B、11 C、12 D、13答案B 6、1
34、法 张晋孔嘉住三楼,每层楼阶梯数是15,那么张晋孔嘉每次回家要爬多少层楼梯? A、20 B、30 C、40 D、45答案B 7、青蛙跳井的问题 井深10米,青蛙每次向上跳5米,又向下滑4米,问他几次能够跳上井? A、5 B、6 C、10 D、9答案X 8、钟表指针重叠问题 中午12点,时针与分针完全重合,那么到下次12点时,时针与分针重合多少次? B 答案13、D 12、C 11、B 10、A 中午12点,秒针与分针完全重合,那么到下午1点时,两针重合多少次? A、60 B、59 C、61 D、62答案B 9、余数相加法 假如今天是星期二,那么再过45天,应该是星期几? A、6 B、5 C、4
35、 D、3答案B 今天是2001-12-01,那么再过65天是几月几日? 2002-02-03 2002-02-04 2002-02-05 2002-02-06 能够被4整除的年是闰年,2月有29天 10、比例分配法 学校一、二、三年级学生总数是450人,三个年级学生人数的比例是2:3:4,问人数最多的年级是多少人? A、100 B、150 C、200 D、250 答案C; 2、数量关系最新冲刺题及答案 最新数量关系冲刺题及答案 31月5元,那么该股票12日闭盘时为每股30月6,到20%、某种股票在六月份跌了1日闭盘时的价格是多少?() A14 B15 C18 D21 2、某国1995年的国民总
36、收入是105亿元,总储蓄是7.5亿元,问该国的1995年的储蓄率是多少?(近似值)() A0.1% B1.4% C3% D7.1% 数字推理:下面的每一道试题都是按某种规律排列的一列数,但其中缺少一项,请你仔细观察数列的排列规律,然后从四个供选择的答案中选择你认为最合适、最合理的一个来填补空缺。 3、0,3,8,15,24,() A33 B35 C48 D49 4、84,64,47,33,(),14 A12 B14 C22 D24 5、4/3,(),12,36 A2 B3 C4 D5 答案:BDBCC 数字推理题练习 一、数字推理题(每题1分,共15分)要求你仔细观察数列的排列规律,然后从四个
37、供选择的选项中选择你认为最合理的一项。 1、1,4,8,13,16,20,() A20; B25; C27; D28 () ,31,15,7,3,1、2 A61; B62; C63; D64 3、1,4,27,(),3125 A70; B184; C256; D351 4、(),36,19,10,5,2 A77; B69; C54; D48 5、2/3,1/2,2/5,1/3,2/7,() A1/4; B1/6; C2/11; D2/9 6、一件商品如果以八折出售,可以获得相当于进价20的毛利,那么如果以原价出售,可以获得相当于进价百分之几的毛利 A20; B30; C40; D50 7、某服
38、装厂生产出来的一批衬衫中大号和小号各占一半。其中25是白色,75是蓝色的。如果这批衬衫总共有100件,其中大号白色衬衫有10件,问小号蓝色衬衫有多少件 A15; B25; C35; D40 8、某剧场共有100个座位,如果当票价为10元时,票能售完,当票价超过10元时,每升高2元,就会少卖出5张票。那么当总的售票收入为1360元时,票价为多少 A12元; B14元; C16元; D18元 9、20XX年,某公司所销售的计算机台数比上一年度上升了20,而每台的价格比上一年度下降了20。如果20XX年该公司的计算机销售额为3000万元,那么2000年的计算机销售额大约是多少 A2900万元; B3
39、000万元; C3100万元; D3300万元 10、赛马场的跑马道600米长,现有甲、乙、丙三匹马,甲1分钟跑2圈,乙1分钟跑3圈。如果这三匹马并排在起跑线上,同时往一个方向跑,请问经过几4分钟跑1圈,丙分钟;这三匹马自出发后第一次并排在起跑线上 A1/2; B1; C6; D12 11、一种挥发性药水,原来有一整瓶,第二天挥发后变为原来的1/2;第三天变为第二天的2/3;第四天变为第三天的3/4,请问第几天时药水还剩下1/30瓶 A5天; B12天; C30天; D100天 12、某企业发奖金是根据利润提成的。利润低于或等于10万元时可提成10;低于或等于20万元时,高于10万元的部分按7
40、.5提成;高于20万元时,高于20万元的部分按5%提成。当利润为40万元时,应发放奖金多少万元 A2; B2.75; C3; D4.5 13、某校在原有基础(学生700人,教师300人)上扩大规模,现新增加教师75人。为使学生和教师比例低于2:1,问学生人数最多能增加百分之几 A7; B8; C10.3; D11 14、姐弟俩出游,弟弟先走一步,每分钟走40米,走80米后姐姐去追他。姐姐每分钟走60米,姐姐带的小狗每分钟跑150米。小狗追上弟弟又转去找姐姐,碰上姐姐又转去追弟弟,这样跑来跑去,直到姐弟相遇小狗才停下来。问小狗共跑了多少米 A600米; B800米; C1200米; D1600米
41、 15、假设地球是一个正球形,它的赤道长4万千米。现在用一根比赤道长10米的绳子围绕赤道一周,假设在各处绳子离地面的距离都是相同的,请问绳子距离地面大约有多高 A1.6毫米; B3.2毫米; C1.6米; D3.2米 【正确答案】 1、B;2、C;3、C;4、B;5、A;6、D;7、C;8、C;9、C;10、B;11、C;12、B;A 、15;A、14;A、13 1、875489648933=() A.428303315966 B.428403225876 C.428430329557 D.428403325968 2、35432782221515() A.7871445226160 B.78
42、61445226180 C.7571445226150 D.7871445226170 3、3654242312=() A.1309623104 B.1409623104 C.1809623104 D.未给出 4、1256183225=() A.61708000 B.61680000 C.63670000 D.61800000 5、8684=() A.7134 B.7214 C.7304 D.7224 6、99101=() A.9099 B.9089 C.9189 D.9999 7、两辆卡车共载货500吨,第一辆比第二辆多载50吨,第一辆和第二辆分别载货()吨。 225) ,D.(275 21
43、5),C.(285 295),B.(245 235),A.(265 8、商店各以3000元卖出两件商品,其中盈亏均为20%,则该店应()。 A.赚500元 B.亏300元 C.持平 D.亏250元 9、今天是星期二,5550天之后()。 A.星期一 B.星期二 C.星期三 D.星期四 10、20位面包师傅用2小时烤出200条面包,依照这个速率,2位面包师傅花()小时可以烤出100条面包。 A.20 B.15 C.12 D.10 11、考卷上的判断题做对得1分,做错倒扣1分,张某在判断题上共得6分,他应该是在10道题目中做错()题。 A.1 B.2 C.3 D.4 12、48与108的最大公约数是()。 A.6 B.8 C.24 D.12 13、如果(5,7)=74,(4,6)=52,(3,5)=34,则(0,4)=() A.53 B.51 C.26 D.16 14、某公司规定,凡购
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度山西省高校教师资格证之高等教育法规真题练习试卷B卷附答案
- 2024年大、中容量数字程控交换机项目资金需求报告代可行性研究报告
- 2024年机械治疗及病房护理设备项目资金申请报告代可行性研究报告
- 幼儿园校舍安全排查自查报告范文
- 2024年产品保修服务协议文本
- 2024年专用液化气运输服务协议范本
- 2024年建筑效果设计方案协议模板
- 2024年二手车销售协议:全面细化
- 仓库租赁与承包协议范本2024年适用
- 出口业务协议样式2024年专业
- 教科版科学二年级上册全册教案(完整版)
- 院长行政查房科主任汇报
- 人教鄂教版小学科学六年级下册全册分层练习
- 情感纠纷案件调解协议书
- 孔明灯的知识与制作课件
- 安徽省江南十校2023-2024学年高一上学期12月分科模拟联考数学试题(解析版)
- 建筑工地施工组织与管理课件
- 风电场项目施工进度计划及保证措施
- 《心理调适方法》课件
- 2024-2023-2024年中考语文三年真题分类汇编(全国版)21记叙文 试卷(含答案解析)
- 材料科学与自然辩证法
评论
0/150
提交评论