


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、当前求解三对角线性方程组两类并行算法的特点 一、概述三对角线性方程组的求解是许多科学和工程计算中最重要也是最基本的问题之一。在核物理、流体力学、油藏工程、石油地震数据处理及数值天气预报等许多领域的大规模科学工程和数值处理中都会遇到三对角系统的求解问题。很多三对角线性方程组的算法可以直接推广到求解块三对角及带状线性方程组。由于在理论和实际应用上的重要性,近20年来三对角方程组的并行算法研究十分活跃。大规模科学计算需要高性能的并行计算机。随着软硬件技术的发展,高性能的并行计算机日新月异。现今,smp可构成每秒几十亿次运算的系统,pvp和cow可构成每秒几百亿次运算的系统,而mpp和dsm可构成每秒
2、万亿次运算或更高的系统。高性能并行计算机只是给大型科学计算提供了计算工具。如何发挥并行计算机的潜在性能和对三对角系统进行有效求解,其关键在于抓住并行计算的特点进行并行算法的研究和程序的设计与实现。另外,对处理机个数较多的并行计算系统,在设计并行算法时必须解决算法的可扩展性,并对可扩展性进行研究和分析。二、问题的提出设三对角线性方程组为 ax=y &
3、nbsp; (1) 式中
4、:a∈rn×n非奇异,αij=0, 。x=(x1,x2,…xn)t y=(y1,y2,…yn)t。此系统在许多算法中被提出,因此研究其高性能并行算法是很有理论和实际意义的。三、并行求解三对角系统的直接解法关于三对角线性方程组的直接求解已经有大量并行算法,其中wang的分裂法是最早针对实际硬件环境,基于分治策略提出的并行算法。它不仅通信结构简单,容易推广到一般带状线性方程组的并行求解,而且为相继出现的许多其它并行算法
5、提供了可行的局部分解策略。近20年来求解三对角方程组的并行算法都是基于分治策略,即通过将三对角方程组分解成p个小规模问题,求解这p个小规模问题,再将这些解结合起来得到原三对角方程组的解。一般求解三对角方程组的分治方法的计算过程可分为3个阶段:一是消去,每台处理机对子系统消元;二是求解缩减系统(需要通信);三是回代,将缩减系统的解回代到每个子系统,求出最终结果。具体可分为以下几类:(一)递推耦合算法(recursive doubling)由stone于1975年提出,算法巧妙地把lu分解方法的时序性很强的递推计算转化为递推倍增并行计算。d.j.evans对此方法做了大量研究。p.dubois和g
6、.rodrigue的研究表明stone算法是不稳定的。(二)循环约化方法(cyclic reduction)循环约化方法由hockey和g.golub在1965年提出,其基本思想是每次迭代将偶数编号方程中的奇变量消去,只剩下偶变量,问题转变成求解仅由偶变量组成的规模减半的新三对角方程组。求解该新方程组,得到所有的偶变量后,再回代求解所有的奇变量。即约化和回代过程。由于其基本的算术操作可以向量化,适合于向量机。此方法有大量学者进行研究,提出了许多改进的方法。例如,heller针对最后几步的短向量操作提出了不完全循环约化方法;r.reulter结合ibm3090vf向量机的特点提出了局部循环约化法
7、;p.amodio针对分布式系统的特点改进了循环约化方法;最近针对此方法又提出对三对角方程组进行更大约化步的交替迭代策略。(三)基于矩阵乘分解算法将系数矩阵a分解成a=ft,方程ax=b化为fy=b和tx=y两个方程组的并行求解。这种算法又可以分为两类:1.重叠分解。如wang的分裂法及其改进算法就属于这一类。p.amodio在1993年对这类算法进行了很好的总结,用本地lu、本地lud和本地循环约化法求解,并在1995年提出基于矩阵乘分解的并行qr算法。h.michielse和a.van der vorst改变wang算法的消元次序,提出了通信量减少的算法。李晓梅等将h.michielse和
8、a.van der vorst算法中的通信模式从单向串行改为双向并行,提出dpp算法,是目前最好的三对角方程组分布式算法之一。2000年骆志刚等中依据dpp算法,利用计算与通信重叠技术,减少处理机空闲时间取得了更好的并行效果。此类算法要求解p-1阶缩减系统。2.不重叠分解。例如lawrie & sameh算法、johsoon算法、baron算法、chawla在1991年提出的wz分解算法以及mattor在1995年提出的算法都属于这一类。此类算法要求解2p-2阶缩减系统。(四)基于矩阵和分解算法将系数矩阵分解成a=ao+a,这类算法的共同特点是利用sherman & morrison公式将和的逆化为子矩阵逆的和。按矩阵分解方法,这种算法又可分为两类:1.重叠分解。这类算法首先由mehrmann在1990年提出,通过选择好的分解在计算过程中保持原方程组系数矩阵的结构特性,具有好的数值稳定性,需要求解p-1阶缩减系统。2.不重叠分解。sun等在1992年提出的并行划分lu算法ppt算法和并行对角占优算法pdd算法均属于这一类。需要求解2p-2阶缩减系统。其中pdd算法的通讯时间不随处理机的变化而变化,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训团队微课设计与制作
- 融合教育教师培训
- 广西高一上数学试卷
- 杭州中考初三数学试卷
- 2025年5月25日昆明石林县事业单位面试真题及答案解析
- 河北高考语文数学试卷
- 女性健康知识科普指南
- 特级护理健康教育课件
- 2025至2030葡萄行业发展趋势分析与未来投资战略咨询研究报告
- 幼儿小班健康我会上厕所
- 2025届高三数学一轮复习备考经验交流
- 2024年兴业银行分期还款协议书范文减免利息
- 广西崇左市广西大学附属中学2024-2025学年高一上学期分班测试数学试题A(解析版)
- 核级设备设计制造规范ASME介绍
- 人教版三年级数学上册第六单元《多位数乘一位数》(大单元教学设计)
- 最简单封阳台安全免责协议书
- JT-556-2004港口防雷与接地技术要求及港口装卸区域照明照度及测量方法-PDF解密
- 成人住院患者静脉血栓栓塞症的预防护理-2023中华护理学会团体标准
- (正式版)JBT 3300-2024 平衡重式叉车 整机试验方法
- 多渠道外贸客户开发
- 咸阳市三原县社工招聘笔试真题
评论
0/150
提交评论