版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、长春市普通高中 2018 届高三质量监测(一)数学试题卷(理科)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分在每小题给出的四个选项中,只有一项是符合题目要求的1. 设为虚数单位,则 ( )A. B. C. 5 D. -5【答案】 A【解析】由题意可得: .本题选择 A选项.2. 集合 的子集的个数为( )A. 4 B. 7 C. 8 D. 16【答案】 C【解析】集合 含有 3 个元素,则其子集的个数为 .本题选择 C选项.3. 若图是某学校某年级的三个班在一学期内的六次数学测试的平均成绩 关于测试序号的函数图像,为了容易看出一个班级的成绩变化, 将离散的点用虚线连接, 根
2、据图像, 给出下列结论:一班成绩始终高于年级平均水平,整体成绩比较好;二班成绩不够稳定,波动程度较大;三班成绩虽然多数时间低于年级平均水平,但在稳步提升其中正确结论的个数为( )A. 0 B. 1 C. 2 D. 3【答案】 D【解析】通过函数图象,可以看出均正确 . 故选 D.4. 等差数列 中, 已知 ,且公差 ,则其前 项和取最小值时的 的值为 ( )A. 6 B. 7 C. 8 D. 9【答案】 C【解析】因为等差数列 中, ,所以 ,有 , 所以当 时前 项和取最小值 . 故选C. . . .5. 已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A. 95 ,9
3、4 B. 92 ,86 C. 99 ,86 D. 95 ,91【答案】 B【解析】 由茎叶图可知,中位数为 92,众数为 86. 故选 B.6. 若角 的顶点为坐标原点,始边在 轴的非负半轴上,终边在直线 上,则角 的取值集合是( )A. B.C. D.【答案】 D【解析】因为直线 的倾斜角是 ,所以终边落在直线 上的角的取值集合为或者 . 故选 D.7. 已知 ,且 ,则 的最小值为( )A. 8 B. 9 C. 12 D. 16【答案】 B【解析】由题意可得: ,则:,当且仅当 时等号成立,2综上可得:则 的最小值为 9.本题选择 B选项.点睛: 在应用基本不等式求最值时, 要把握不等式成
4、立的三个条件, 就是“一正各项均为正; 二定积或和为定值; 三相等等号能否取得”, 若忽略了某个条件, 就会出现错误8. 九章算术卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为 1 丈),那么该刍甍的体积为( )A. 4 立方丈 B. 5 立方丈 C. 6 立方丈 D. 12 立方丈【答案】 B【解析】由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为 3,四棱锥的体积为 2,则刍甍的体积为 5. 故选 B.9. 已知矩形 的顶点都在球心为 ,半径为 的球面上
5、, ,且四棱锥 的体积为 ,则 等于( )A. 4 B. C. D.【答案】 A【解析】由题意可知球心到平面 ABCD的距离 2 ,矩形 ABCD所在圆的半径为 ,从而球的半径 . 故选 A.10. 已知某算法的程序框图如图所示,则该算法的功能是( )3A. 求首项为 1,公差为 2 的等差数列前 2017 项和B. 求首项为 1,公差为 2 的等差数列前 2018 项和C. 求首项为 1,公差为 4 的等差数列前 1009 项和D. 求首项为 1,公差为 4 的等差数列前 1010 项和【答案】 C【解析】 由题意可知 ,为求首项为 1,公差为 4 的等差数列的前 1009项和. 故选 C.
6、点睛:算法与流程图的考查,侧重于对流程图循环结构的考查 . 先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项 .11. 已知 为坐标原点,设 分别是双曲线 的左、右焦点,点 为双曲线上任一点,过点 作 的平分线的垂线,垂足为 ,则 ( )A. 1 B. 2 C. 4 D.【答案】 A【解析】延长 交 于点 ,由角分线性质可知 根据双曲线的定义,从而 ,在 中, 为其中位线,故 . 故选A.点睛:对于圆锥曲线问题,善用利用定义求解,注意数形结合,画出合理草图,巧妙转化 .12.
7、 已知定义在 上的奇函数 满足 ,当 时, ,则函数在区间 上所有零点之和为( )A. B. C. D.【答案】 D【解析】 ,4作图如下: ,四个交点分别关于对称,所以零点之和为 ,选 D.点睛:对于方程解的个数 (或函数零点个数 ) 问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13. 已知角 满足 , ,则 的取值范围是 _【答案】【解析】结合题意可知: ,且: ,利用不等式的性质可
8、知: 的取值范围是 .点睛:利用不等式性质求某些代数式的取值范围时, 多次运用不等式的性质时有可能扩大变量的取值范围 解决此类问题一般是利用整体思想, 通过“一次性”不等关系的运算求得待求整体的范围,是避免错误的有效途径14. 已知平面内三个不共线向量 两两夹角相等,且 , ,则_【答案】【解析】因为平面内三个不共线向量 两两夹角相等,所以由题意可知, 的夹角为,又知 , ,所以 , ,故答案为 .515. 在 中,三个内角 的对边分别为 ,若 ,且 ,面积的最大值为 _【答案】【解析】由 可得 , ,得,由余弦定理 , 面积的最大值为,当且仅当 时取到最大值,故答案为 .【方法点睛】本题主要
9、考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题 . 在解与三角形有关的问题时, 正弦定理、 余弦定理是两个主要依据 . 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 , 当条件中同时出现 及 、 时,往往用余弦定理, 而题设中如果边和正弦、 余弦函数交叉出现时, 往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答 .16. 已知圆锥的侧面展开图是半径为 3 的扇形,则圆锥体积的最大值为 _【答案】【解析】设圆锥的底面半径为 R,由题意可得其体积为:当且仅当 时等号成立 .综上可得圆锥体积的最大值为 .三、解答题 : 共 70 分解答应写出文字说明、 证
10、明过程或演算步骤 第 1721 题为必考题,每个试题考生都必须作答第 22、23 题为选考题,考生根据要求作答(一)必考题:共 60 分17. 已知数列 的前 项和 ()求数列 的通项公式;()设 ,求证: 【答案】( ) ;()证明见解析 .6【解析】试题分析: ( ) 利用已知条件,推出新数列是等比数列,然后求数列 的通项公式 ;()化简 ,则 ,利用裂项相消法和,再根据放缩法即可证明结果 .试题解析: ( ) 由 ,则 .当 时, ,综上 .()由 . 得证.18. 长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉, 在我市推出的第二季名师云课中,数学学科共计推出 36 节
11、云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:点击量节数 6 18 12()现从 36 节云课中采用分层抽样的方式选出 6 节,求选出的点击量超过 3000 的节数()为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间 内,则需要花费 40 分钟进行剪辑, 若点击量在区间 内,则需要花费 20 分钟进行剪辑, 点击量超过 3000,则不需要剪辑,现从()中选出的 6 节课中随机取出 2 节课进行剪辑,求剪辑时间 的分布列与数学期望【答案】( ) ;() .【解析】试题分析: ( ) 因为 36 节云课中采用分层抽样的方式选出 6 节,所以 节应选出 节;() 的
12、所有可能取值为 ,根据古典概型概率公式分别求出各随机变量的概率,从而可得分布列,由期望公式可得结果 .试题解析: ( ) 根据分层抽样,选出的 6 节课中有 2 节点击量超过 3000.7() 的可能取值为 0,20,40,60则 的分布列为0 20 40 60即 .19. 如图,四棱锥 中,底面 为菱形, 平面 , 为 的中点()证明: 平面 ;()设 ,三棱锥 的体积为 ,求二面角 的余弦值【答案】( ) 证明见解析; () .【解析】试题分析: ( ) ) 连接 交 于点 ,连接 ,根据中位线定理可得 ,由线面平行的判定定理即可证明 平面 ;()以点 为原点,以 方向为 轴,以方向为 轴
13、,以 方向为 轴,建立空间直角坐标系,分别求出平面 与平面 的一个法向量,根据空间向量夹角余弦公式,可得结果 .试题解析: ( ) 连接 交 于点 ,连接在 中,8() ,设菱形 的边长为,则 .取 中点 ,连接 .以点 为原点,以 方向为 轴,以 方向为 轴,以 方向为 轴,建立如图所示坐标系 ., , , ,即二面角 的余弦值为 .【方法点晴】本题主要考查线面平行的判定定理以及利用空间向量求二面角,属于难题 . 空间向量解答立体几何问题的一般步骤是: (1)观察图形,建立恰当的空间直角坐标系; (2)写出相应点的坐标, 求出相应直线的方向向量; (3)设出相应平面的法向量,利用两直线垂直数
14、量积为零列出方程组求出法向量; (4)将空间位置关系转化为向量关系; (5)根据定理结论求出相应的角和距离 .20. 已知椭圆 的两个焦点为 ,且经过点 ()求椭圆 的方程;()过 的直线与椭圆 交于 两点(点 位于 轴上方),若 ,且 ,9求直线的斜率 的取值范围【答案】( ) ;() .【解析】试题分析:(1) 由题意可得 , , ,则椭圆方程为 .(2) 联立直线与椭圆的方程,结合韦达定理得到关于实数 k 的不等式,求解不等式可得直线的斜率 的取值范围是 k= .试题解析:(1) 由椭圆定义 ,有 , , ,从而 .(2) 设直线 ,有 ,整理得 ,设 , ,有 , , , ,由于 ,所
15、以 , ,解得 ., ,由已知 .21. 已知函数 , ()若函数 与 的图像在点 处有相同的切线,求 的值;()当 时, 恒成立,求整数 的最大值;()证明: 【答案】( ) ;() ;()证明见解析 .【解析】试题分析: ( ) 求出 与 ,由 且 解方程组可求 的值;() 恒成立等价于 恒成立,先证明当 时恒成立,再证明时不恒成立,进而可得结果; ()由 ,令 ,即 ,即 ,令 ,各式相加即可得结果 .试题解析: ( ) 由题意可知, 和 在 处有相同的切线,即在 处 且 ,解得 .10()现证明 ,设,令 ,即 ,因此 ,即 恒成立,即 ,同理可证.由题意,当时, 且 ,即 ,即时,
16、成立 .当时, ,即 不恒成立 .因此整数 的最大值为2.()由 ,令 ,即 ,即由此可知,当时, ,当时, ,当时, , 当时, .综上:.即 .(二)选考题:请考生在 22、23 两题中任选一题作答, 如果多做,则按所做的第一题记分22.选修 4-4 :坐标系与参数方程以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知点 的直角坐标为11,点 的极坐标为 ,若直线过点 ,且倾斜角为 ,圆 以 圆心, 3 为半径()求直线的参数方程和圆 的极坐标方程;()设直线与圆 相交于 两点,求 【答案】( ) 为参数), ;() .【解析】试题分析: (1)根据直线参数方程形式直接写出直线的参数方程,根据直角三角形关系得 ,即为圆 的极坐标方程( 2)利用 将圆 的极坐标方程化为直接坐标方程,将直线参数方程代入,利用韦达定理及参数几何意义得|=7试题解析:()直线的参数方程为 (t 为参数),圆的极坐标方程为 .()把 代入 ,得 ,设点 对应的参数分别为 ,则 ,23. 选修 4-5 :不等式选讲设不等式 的解集为 ()求集合 ;()若 ,求证: 【答案】( ) ;()证明见解析 .【解析】试题分析: (1)根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版王磊与刘芳离婚协议书(子女教育协议)3篇
- 二零二五年度绿色建筑推广活动策划合同2篇
- 2025年度航空航天设备生产厂家销售合同范本4篇
- 2025年度智能化厂房租赁管理服务合同4篇
- 2025年度茶叶产品绿色包装研发与应用合同4篇
- 2024版油漆工雇佣协议样本3篇
- 个性化游艇租赁服务协议范本2024版B版
- 2025年度出境游旅游市场调研与分析合同3篇
- 2025年不锈钢装饰材料采购及安装服务合同3篇
- 2025年厂房租赁期物业管理服务合同3篇
- 运输供应商年度评价表
- 机械点检员职业技能知识考试题库与答案(900题)
- 成熙高级英语听力脚本
- 北京语言大学保卫处管理岗位工作人员招考聘用【共500题附答案解析】模拟试卷
- 肺癌的诊治指南课件
- 人教版七年级下册数学全册完整版课件
- 商场装修改造施工组织设计
- (中职)Dreamweaver-CC网页设计与制作(3版)电子课件(完整版)
- 统编版一年级语文上册 第5单元教材解读 PPT
- 加减乘除混合运算600题直接打印
- ASCO7000系列GROUP5控制盘使用手册
评论
0/150
提交评论