




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高等数学2-1模拟试题二一填空题(本题共4小题,每小题5分,满分20) 1 当时,是比高阶的无穷小,则当时, 无穷小 f(x)+g(x) 与无穷小的关系是_. 2. 若为可导的奇函数,且,则_. 3. 4. _.二.选择题(本题共4小题,每小题5分,满分20分。每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) 1. 极限的结果是 (a)1, (b), (c)2, (d)极限不存在. 答: () 2. 已知a是大于零的常数,则f的值应是: 答: () 3. 设连续,已知则n应是 (a), (b), (c), (d) 答: () 4. 曲线在上与轴所围成的图形的面积
2、为 (a), (b)0, (c)4, (d)6. 三.计算题(本题共7小题,每小题7分,满分49分。)1. 设求的定义域 2设函数具有二阶导数,且 求 3求 4.求 5.求 6. 设其中三阶可导且求7.设由方程所确定求四、证明题:(本题11分)证明当时有不等式高等数学一、1.等价无穷小 2. 3. 4. tanx-secx+c .二、1。d. 2. a. 3. c. 4. c三、1解得公共解为或所求定义域为2注:若用罗必法则求则本段不给分,本题给5分34原式= 5原式=67四、设,在连续,且在上所以在单调增,即当时,.07-08-1学期高等数学a1a卷参考答案及评分标准一、 单项选择题(每小题
3、3分,共18分)1、a ;2、b; 3、b; 4、b; 5、c; 6、c二、填空题(每小题3分,共18分)7、;8、;9、;10、;11、;12、.三、解下列各题(每小题6分,共48分)13解:因为,且,所以,得a = 1. 3分极限化为,得b = -4.3分因此,a = 1,b = -4.14证明:双曲线上任何一点的切线方程为 切线与轴、轴的交点为故切线与二个坐标轴所围成的三角形的面积为 15、解:16解: 17解: 18解:由题意,展开求得:, ,所以 19、解:所求平面的法向量:所求平面的方程为:即:20解:方程两边对求导得(*)即 令得,将代入原方程得唯一驻点。(*)式两边对求导得将,代入上式得因此,为的极小点.1分四、综合题(每小题8分,共16分)21解:设切点坐标为,由,可知曲线在处的切线方程为,或因此所求旋转体的体积为 所以,得驻点,舍去由于,因而函数在处达到极小值,而且也是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度船舶建造与设计合同年度更新
- 2025年度跨境电商代理记账与税务合规支持协议
- 2025年度人工智能技术研发合作协议(全新版)
- 2025年度创意产业园区租赁合同及创业支持协议
- 2025年度租赁合同范本(含违约责任)
- 持续反馈机制的建立与实施计划
- 加强数据安全管理的实施措施计划
- 2025年CO2气体保护药芯焊丝合作协议书
- 定期举办学术交流活动计划
- 生产计划科学制定
- 人教版小学数学一年级下册教案
- 《住院患者身体约束的护理》团体标准解读课件
- 新版人音版小学音乐一年级下册全册教案
- 员工调薪申请单模板
- AQL_抽样标准表
- 清华建筑系教授已中杰青基金申请书
- 医院核磁共振仪电磁屏蔽室设计方案
- 盆底障碍影响简易问卷7PFIQ-7
- 双控机制建设安全风险分级管控台账
- 日顺电子酒店智能房控管理系统说明书
- 公因数、最大公因数的应用
评论
0/150
提交评论