人教版九年级数学二次函数应用题(含答案)_第1页
人教版九年级数学二次函数应用题(含答案)_第2页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档人教版九年级数学二次函数实际问题(含答案)、单选题1. 在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为 s=5t2+2t,则当t=4时,该物体所经过的路程为A. 28 米B. 48 米C. 68 米D. 88 米y=ax2 +bx+c的图象过点(1, 0) 求证这个二次函数的2. 由于被墨水污染,一道数学题仅能见到如下文字:图象关于直线x=2对称,题中的二次函数确定具有的性质是A. 过点(3, 0)B. 顶点是(2, -1)C. 在x轴上截得的线段的长是3D. 与y轴的交点是(0, 3)3某幢建筑物,从10 m高的窗口 A用水管向外喷水,喷出的水流呈抛物线状(抛物线

2、所在的平面与墙面40垂直),如图,如果抛物线的最高点 M离墙1m,离地面3 m,则水流落地点 B离墙的距离OB是D. 5 m4.如图,铅球运动员掷铅球的高度A. 2mB. 3mC .4 m1 a 25y x H常斗_y(m)与水平距离x(m)之间的函数关系式是】、,则该运动员此次掷铅球的成绩是yCkJokKA.6 mB.8mC.10 mD.12 m5某人乘雪橇沿坡度为1:的斜坡笔直滑下,滑下的距离S(m)与时间t(s)间的关系为S=IOt+2t2,若滑到坡底的时间为4s,则此人下降的高度为A. 72 mB. 36mC. 36 mD. 18m6.童装专卖店销售一种童装,若这种童装每天获利y(元)

3、与销售单价x(元)满足关系y=-x2 +50X-500,则要想获得最大利润,销售单价为A. 25 元B. 20 元C. 30 元D. 40 元7中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从 2.4米高(球门距横梁底侧高)入网.若足球运行的路线是抛物线y=ax2 +bx+c所示,则下列结论正确的是I I 1 I a I; 呻a0; 0b-12aA. B. C. D. 8.关于x的二次函数y=2mx2 +(8m+1)x+8m的图象与x轴有交点,则 m的取值范围是A. m且 m0-丄C. m= 16LID. m 1$ m09某种产品的年产量不超过 1 000吨,该产品的年产量(吨)

4、与费用(万元)之间函数的图象是顶点在原 点的抛物线的一部分,如图 所示;该产品的年销售量(吨)与销售单价(万元/吨)之间的函数图象是 线段,如图所示,若生产出的产品都能在当年销售完,则年产量是()吨时,所获毛利润最大.(毛利润=销售额-费用)1000年铐苜量晦木農用万元1000早立量氏A.1 000B.750C.725D. 50010.某大学的校门是一抛物线形水泥建筑物,如图所示,大门的地面宽度为 8m,两侧距地面4m高处各有-个挂校名匾用的铁环,两铁环的水平距离为6m,则校门的高为(精确到0.1m,水泥建筑物的厚度忽略不计)A.5.1 mB.9.0mC.9.1 mD.9.2 m2m,水11图

5、是一个横断面为抛物线形状的拱桥,当水面在如图时,拱顶(拱桥洞的最高点)离水面面宽4 m.如图(2)建立平面直角坐标系,则抛物线的关系式是A. y= - 2x2B. y=2x2C. y=-2 x2D. y= - x212向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx若此炮弹在第7秒与第1 4秒时的高度相等,则在下列哪一个时间的高度是最高的?A. 第8秒B. 第10秒C. 第12秒D. 第15秒、填空题13. 把一根长为100 cm的铁丝剪成两段,分别弯成两个正方形,设其中一段长为xcm,两个正方形的面积的和为S cm2,则S与x的函数关系式是(),自变量x的取值范围

6、是().14. 如图所示,是某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下,建立如图所示的坐标系,如果喷头所在处 A(0, 1.25),水流路线最高处 B(1, 2.25),则该抛物线的表达式为()如果不考虑其他因 素,那么水池的半径至少要(),才能使喷出的水流不致落到池外.15.如图,一桥拱呈抛物线状,桥的最大高度是16 m ,跨度是40 m ,在线段AB上离中心M处5m的地方,桥的高度是()m16. 在距离地面 2m高的某处把一物体以初速度vo(m/s)竖直向上抛出,在不计空气阻力的情况下,其1 aI jS =二砂2 上升咼度s(m)与抛出时间t(s)满足:2(其中g是常数,通常取

7、10m/s),若vo=1O m/s,则该物体在运动过程中最高点距离地面()m三、计算题17. 求下列函数的最大值或最小值.(I)(2)y=3(x+l) (x-2).四、解答题18. 如图,隧道的截面由抛物线 AED和矩形ABCD构成,矩形的长 BC为8m,宽AB为2m,以BC所在的直 线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系, y轴是抛物线的对称轴,顶点 E到坐标原点O(1) 求抛物线的解析式;(2) 如果该隧道内设双行道,现有一辆货运卡车高为4.2 m,宽为2.4 m,这辆货运卡车能否通过该隧道?通过计算说明.19. 某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天

8、的销量m (件)与每件的销售价 x(元)满足一次函数:m=162-3x.(1) 写出商场卖这种商品每天的销售利润y与每件的销售价x之间的函数关系式.如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?能力提升20. 如图所示,一边靠学校院墙,其他三边用40 m长的篱笆围成一个矩形花圃,设矩形ABCD的边AB =xm,面积为Sm2If $ Wf章I JT/ F尹* F亍*豪fABc(1) 写出S与x之间的函数关系式,并求当 S=200 m2时,x的值;设矩形的边BC=y m,如果x, y满足关系式x: y=y: (x+y),即矩形成黄金矩形,求此黄金矩形的长和宽

9、.21. 某产品每件成本是120元,为了解市场规律,试销售阶段按两种方案进行销售,结果如下:方案甲:保留每件150元的售价不变,此时日销售量为50件;方案乙:不断地调整售价,此时发现日销量y(件)是售价x (元)的一次函数,且前三天的销售情况如下表:1.30150160y件70DO40(1) 如果方案乙中的第四天,第五天售价均为180元,那么前五天中,哪种方案的销售总利润大?分析两种方案,为了获得最大日销售利润,每件产品的售价应定为多少元?此时,最大日销售利润 S是多少?(注:销售利润 =销售额-成本额,销售额=售价壮肖售量).22. 某医药研究所进行某一抗病毒新药的开发,经过大量的服用试验后

10、可知:成年人按规定的剂量服用后,每毫升血液中含药量 y微克(1微克=10-3毫克)随时间xh的变化规律与某一个二次函数y=aN +bx+c(a工0)相吻合并测得服用时(即时间为0)每毫升血液中含药量为 0微克;服用后2h,每毫升血液中含药量为6微克;服用后3h,每毫升血液中含药量为7.5微克.(I)试求出含药量y微克与服用时间xh的函数关系式;并画出0 x訥的函数图象的示意图;求服药后几小时,才能使每毫升血液中含药量最大?并求出血液中的最大含药量.(3)结合图象说明一次服药后的有效时间有多少小时?(有效时间为血液中含药量不为0的总时间.)23. 某农户计划利用现有的一面墙再修四面墙,建造如图所

11、示的长方体水池,培育不同品种的鱼苗,他已备足可以修高为1.5 m ,长18m的墙的材料准备施工, 设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm .(不考虑墙的厚度)(1)若想水池的总容积为 36 m3, x应等于多少?求水池的容积 V与x的函数关系式,并直接写出 x的取值范围;(3)若想使水浊的总容积 V最大,x应为多少?最大容积是多少?实践探究24. 如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20 m,如果水位上升 3m时,水面CD的宽是 10 m.(1)建立如图所示的平面直角坐标系,求此抛物线的解析式;(2)现有一辆载有一批物资的货车从甲地出发需经过此桥

12、开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以40 km/h的速度开往乙地,当行驶 1 h时,忽然接到紧急通知:前方连降暴雨,造成水位以 每小时0. 25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由,若不能,要使货车安全通过此桥,速度应超过每小时多少千米?pnmnn_ro5 n n .a-i 耳-!725全线共有隧道37座,共计长达742421.2米如图所示是庙垭隧道的截面,截面是由一抛物线和一矩形构成,其行车道 CD总宽度为8米,隧道为单行线 2车道.(1)建立恰当的平面

13、直角坐标系,并求出隧道拱抛物线EHF的解析式;(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中用坐标表示其中一盏路灯的位置;为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否通过这个隧道?请说明理由.26.我市有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1 000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1兀;但冷冻存放这批野生菌时每天需要支出各种费用合计 310兀,而且这类野生菌在冷库中最

14、多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.(3)李经理将这批野生菌存放多少天后出售可获得最大利润W元?(利润=销售总额-收购成本-各种费用)27. 在如图所示的抛物线型拱桥上,相邻两支柱间的距离为10 m,为了减轻桥身重量,还为了桥形的美观,更好地防洪,在大抛物线拱上设计两个小抛物线拱,三条抛物线的顶点C B D离桥面的距离分别为 4m、10 m、2 m .你能求出各支柱的长度及各抛物线的表达式吗?28.

15、 某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结 果如下:一件商品的售价 M(元)与时间t (月)的关系可用一条线段上的点来表示,如图甲,一件商品的成 本Q(元)与时间t (月)的关系可用一条抛物线上的点来表示,其中6月份成本最高,如图乙.根据图象提供的信息解答下面问题(1)一件商品在3月份出售时的利润是多少元?(利润=售价一成本)求出图(乙)中表示的一件商品的成本Q(元)与时间t (月)之间的函数关系式;你能求出3月份至7月份一件商品的利润 W(元)与时间t (月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30000件,请你计算该公司在一

16、个月内最少获利多少元?29. 某工厂生产 A产品x吨所需费用为P元,而卖出 x吨这种产品的售价为每吨Q元,已知P = ? +5+1000,0=-+4510种(1)该厂生产并售出x吨,写出这种产品所获利润 W (元)关于x (吨)的函数关系式;(2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元?这时每吨的价格又是多少元?30. 某商场销售一种进价为 20元/台的台灯,经调查发现,该台灯每天的销售量w (台)与销售单价 x(元)满足w=-2x+80,设销售这种台灯每天的利润为y (元).(1)求y与x之间的函数关系式;当销售单价定为多少元时每天的利润最大?最大利润是多少?在保证销售

17、量尽可能大的前提下该商场每天还想获得150元的利润.应将销售单价定为多少元?精品文档参考答案1、D2、A3、B4、C5、C6、A7、B8、B9、B10、C11、C12、B_ Jf3+100x+5000O =13、80x10014、y=- (x-1) 2+2. 252.515、1516、717、解:(I)a =一 0.y有最小值,当x= 2 时,27y有最小值(4, 2),则 16a+6=2,18、解:设抛物线的解析式为y=ax2+6,又因为抛物线过点1a =-1*A抛物线的解析式为 y= +6.I 1 0(2)当 x=2.4 时,y=+6 =-1. 44+6=4. 564.2,故这辆货运卡车能

18、通过该隧道.19、解:(l)y=(x-30) (162-3x)= - 3 x2 +252x-4860(2)y= -3 (x-42) 2 +432当定价为42元时,最大销售利润为432元加2.n, 一 2/+40孟一 200二 0山=1020、解:(l)S=x(40- 2x)=-2 x2+40x,当 S=200 时,当 BC=y,则 y=40-2x又y2 =x(x+y)由、解得x=20土却5,其中20+不合题意,舍去,I. x=20-2,, y=3- J当矩形成黄金矩形时,宽为20-应”上m,长为左;5 m.21、 解:方案乙中的一次函数为y= -x+200.第四天、第五天的销售量均为20件.方

19、案乙前五天的总利润为:130 X 70+150 X 50+160 40+180X 20+180 X 20-120X (70+50+40+20+20)=6200 元.方案甲前五天的总利润为(150-120) X 50 X 5=7元,显然62007 500,前五天中方案甲的总利润大.(2) 若按甲方案中定价为 150元/件,则日利润为(150-120) X 50=1500,对乙方案:S=xy-120y=x(-x+200) -120(-x+200)= -x2 +320x- 24000= - (x-160) 2 +1600,即将售价定在160元/件,日销售利润最大,最大利润为1600元.y= -4x2

20、2、 解:(1)图象略.y= x4x = (x-4)a +8 I.22当x=4时,函数y有最大值&所以服药后4h,才能使血液中的含药量最大,这时的最大含药量是每毫升血液中含有药 8微克.(3) 图象与x轴两交点的横坐标的差即为有效时间.故一次服药后的有效时间为8h23、解:(I)因为 AD= EF=BC=x m,所以AB=18-3x.所以水池的总容积为1. 5x(18-3x)=36 ,即 x2- 6x+8=0,解得 X1=2, X2=4,所以x应为2或4.(2) 由 (1)可知 V 与 x 的函数关系式为 V=1. 5x(18-3x)= -4.5x2 +27x,且x的取值范围是:0x2.5 ,

21、所以能通过.26、解:(1)y=x+30 (1 x 10(且 x 为整数)P=(x+30) (1000-3x) =-3+910x+30000W 最大=30000 .由题意得 W= (-l+910x+30000) -30 X 1000-310x=-3x-100) 2+30000 当 x=100 时,100天Sy= X T125卜一齐5-抛物线OBA的解析式为(m), PQ1-FQ=(m).12S又 抛物线CE过顶点C(10,46),E(20,),51163一解析式为y=-(x-10)2 +46.而抛物线PD过顶点D(85,48),P(70 ,).2321解析式为 y=-(x-85)2+48. x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论