![定积分的简单应用——求体积_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-3/18/60adaf62-4c4a-4a38-a31d-0226a4407e3b/60adaf62-4c4a-4a38-a31d-0226a4407e3b1.gif)
![定积分的简单应用——求体积_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-3/18/60adaf62-4c4a-4a38-a31d-0226a4407e3b/60adaf62-4c4a-4a38-a31d-0226a4407e3b2.gif)
![定积分的简单应用——求体积_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-3/18/60adaf62-4c4a-4a38-a31d-0226a4407e3b/60adaf62-4c4a-4a38-a31d-0226a4407e3b3.gif)
![定积分的简单应用——求体积_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-3/18/60adaf62-4c4a-4a38-a31d-0226a4407e3b/60adaf62-4c4a-4a38-a31d-0226a4407e3b4.gif)
![定积分的简单应用——求体积_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-3/18/60adaf62-4c4a-4a38-a31d-0226a4407e3b/60adaf62-4c4a-4a38-a31d-0226a4407e3b5.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、4.2定积分的简单应用(二)复习:(1) 求曲边梯形面积的方法是什么?(2) 定积分的几何意义是什么?(3) 微积分基本定理是什么?引入:我们前面学习了定积分的简单应用求面积。求体积问题也是定积分的一个重要应用。下面我们介绍一些简单旋转几何体体积的求法。1. 简单几何体的体积计算问题:设由连续曲线和直线,及轴围成的平面图形(如图甲)绕轴旋转一周所得旋转体的体积为,如何求?分析:在区间内插入个分点,使,把曲线()分割成个垂直于轴的“小长条”,如图甲所示。设第个“小长条”的宽是,。这个“小长条”绕轴旋转一周就得到一个厚度是的小圆片,如图乙所示。当很小时,第个小圆片近似于底面半径为的小圆柱。因此,第
2、个小圆台的体积近似为该几何体的体积等于所有小圆柱的体积和:这个问题就是积分问题,则有:归纳:设旋转体是由连续曲线和直线,及轴围成的曲边梯形绕轴旋转而成,则所得到的几何体的体积为2. 利用定积分求旋转体的体积(1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数(2) 分清端点(3) 确定几何体的构造(4) 利用定积分进行体积计算3. 一个以轴为中心轴的旋转体的体积若求绕轴旋转得到的旋转体的体积,则积分变量变为,其公式为类型一:求简单几何体的体积例1:给定一个边长为的正方形,绕其一边旋转一周,得到一个几何体,求它的体积思路:由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方
3、程,确定积分上、下限,确定被积函数即可求出体积。解:以正方形的一个顶点为原点,两边所在的直线为轴建立如图所示的平面直角坐标系,如图。则该旋转体即为圆柱的体积为:规律方法:求旋转体的体积,应先建立平面直角坐标系,设旋转曲线函数为。确定积分上、下限,则体积练习1:如图所示,给定直角边为的等腰直角三角形,绕轴旋转一周,求形成的几何体的体积。解:形成的几何体的体积为一圆柱的体积减去一圆锥的体积。 类型二:求组合型几何体的体积例2:如图,求由抛物线与直线及所围成的图形绕轴旋转一周所得几何体的体积。思路:解答本题可先由解析式求出交点坐标。再把组合体分开来求体积。解:解方程组 得:与直线的交点坐标为所求几何
4、体的体积为:规律方法:解决组合体的体积问题,关键是对其构造进行剖析,分解成几个简单几何体体积的和或差,然后,分别利用定积分求其体积。练习2:求由直线,直线与轴围成的平面图形绕轴旋转一周所得旋转体的体积。解:旋转体的体积:类型三:有关体积的综合问题:例3:求由曲线与所围成的平面图形绕轴旋转一周所得旋转体的体积。思路:解题的关键是把所求旋转体体积看作两个旋转体体积之差。画出草图确定被积函数的边界确定积分上、下限用定积分表示体积求定积分解:曲线与所围成的平面图形如图所示:设所求旋转体的体积为根据图像可以看出等于曲线,直线与轴围成的平面图形绕轴旋转一周所得的旋转体的体积(设为)减去曲线直线与轴围成的平面图形绕轴旋转一周所得的旋转体的体积(设为)反思:结合图形正确地把求旋转体体积问题转化为求定积分问题是解决此类问题的一般方法。练习3:求由,以及轴围成的图形绕轴旋转一周所得旋转体的体积。解:由 得:误区警示:忽略了对变量的讨论而致错例:已知曲线,和直线,。试用表示该四条曲线围成的平面图形绕轴旋转一周所形成的几何体的体积。思路:掌握对定积分的几何意义,不要忽视了对变量的讨论。解:由 得 由示意图可知:要对与1的关系进行讨论: 当时, 当时,所得旋转体的体积为追本溯源:利用定积分求旋转体
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025北师数学六下第一单元《圆锥的体积》教学分析
- 行政转正申请书
- 奖学金申请书的格式
- 2024-2025学年山东省名校联盟高二上学年11月期中物理试题(解析版)
- 2024-2025学年天津市和平区高三上学期1月期末英语试题(解析版)
- 湖北省随州市部分高中2024-2025学年高三上学期12月月考物理试题(解析版)
- 中国博莱霉素行业市场调查研究及投资前景展望报告
- 中国淡菜干行业市场全景监测及投资前景展望报告
- 知识产权应对策略在各行业的应用与实践
- 放疗科专科习题库(含答案)
- 河南省洛阳市伊川县2024-2025学年上学期期末八年级生物试题
- 2025年汽车零部件项目可行性研究报告
- (一诊)毕节市2025届高三第一次诊断性考试 英语试卷(含答案)
- 油气长输管道检查标准清单
- 《酸枣营销战略》课件
- 小学二年级100以内连加连减竖式计算练习题
- 图像叙事的跨学科视野-洞察分析
- 真需求-打开商业世界的万能钥匙
- 2025年天津市政集团公司招聘笔试参考题库含答案解析
- 急性缺血性卒中再灌注治疗指南2024解读
- 暑假假期安全教育(课件)-小学生主题班会
评论
0/150
提交评论