教案25用三种方式表示二次函数2_第1页
教案25用三种方式表示二次函数2_第2页
教案25用三种方式表示二次函数2_第3页
教案25用三种方式表示二次函数2_第4页
教案25用三种方式表示二次函数2_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.5用三种方式表示二次函数学校:贵阳十三中 课时:1课时 教师:秦江一、教材分析本节课学习用三种方式表示二次函数,即表格、表达式、图象表示法。其实这三种方式在前面的几节课中已经学过。在本节课中不仅要求会用表格、表达式、图象等多种方法表示二次函数,还要使学生体会函数的各种表示方法之间的联系和特点。同时发展有条理地思考和语言表达能力,并能根据具体问题,选取适当的方法表示变量之间的二次函数关系。二、教学目标 (一)知识与技能 1、能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题;2、能够根据二次函数的不同表示方式,从不同侧面对函数性质进行研究(2) 数学思考 1、通过运用解析式、

2、列表、画图象三种方法表示二次函数,得出这三种方法表示二次函数的优缺点分别是什么?2、.针对二次函数所表示的问题,应采取那种方式?(3) 解决问题 根据具体问题,选取适当的方法表示变量之间的二次函数关系。(4) 情感与态度 1、通过用二次函数解决实际问题,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,同时激发他们学习数学的兴趣;2、初步学会从数学的角度提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识。三、教学重点及难点(一)教学重点1、能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题;2、能够根据二次函数的不同表示方式,从不同的侧面对函数性质进

3、行研究。(二)教学难点能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。4、 教学方法在教师的引导下,以学生为主体对问题进行逐步分析探讨。在学生的探讨过程中,教师适时指导、归纳和总结,最后再进一步巩固和练习。5、 教学过程(一)、回顾旧知1、二次函数的一般形式是 2二次函数的图象是 ,y=a(x-h)2+k的对称轴是 ,顶点坐标是 。 3、作出函数图象的具体步骤是什么? (二)、合作交流一、试一试长方形的周长为20 cm,设它的一边长为xcm,面积为ycm2。y随x变化而变化的规律是什么?你能分别用函数表达式、表格和图象表示出来吗?(1)用函数表达式表示:y= 。(2)用表格

4、表示:X12345678910-xY(3)用图象表示: 师:请大家互相交流。生:(1)一边长为x cm,则另一边长为(10-x)cm,所以面积为:yx(10-x)=-x2+10x (3)图象如下图所示: 师:大家可能注意到了函数的图象在第一象限可是我们知道开口向下的抛物线可以到达第四象限和第三象限,这是什么原因呢?生:因为自变量的取值只取到了1至9,而这些点正好都在第一象限,所以图象只能画在第一象限。 师:大家同意这种说法吗? 生:不同意。不是因为列表中自变量的取值的原因,而是由于实际情况。函数值y是面积,而面积是不能为负值的。如果脱离了实际问题,单纯地画函数y=-x2+10x的图象,就不是在

5、第一象限作图象了。二、议一议(1)在上述问题中,自变量x的取值范围是什么?(2)当x取何值时,长方形的面积最大?它的最大面积是多少?你是怎样得到的?请你描述一下y随x的变化而变化的情况。师:自变量x的取值范围即是使函数有意义的自变量的取值范围请大家互相交流。 这是一个实际问题,面积y为边长x的二次函数,求当x取何值时,长方形的面积最大。实际上就是求二次函数的最值,描述y随x的变化而变化的情况,就是以对称轴为分界线,一边为y随x的增大而减小,另一边是y随x的增大而增大。三、做一做两个数相差2,设其中较大的一个数为x,那么它们的积y是如何随x的变化而变化的?你能分别用函数表示式、表格和图象表示这种

6、变化吗? 1用函数表达式表示:y .2用表格表示:XY3用图象表示:4根据以上三种表示方式问答下列问题:(1)白变量x的取值范围是什么?(2)图象的对称轴和顶点坐标分别是什么?(3)如何描述y随x的变化而变化的情况?(4)你是分别通过哪种表示方式回答上面三个问题的?师:请大家互相交流。 生:解:1因为较大的一个数为x,那么较小的数为(x-2),则积y=x(x-2)x2-2x所以函数的表达式为yx2-2x。2.21世纪教育网x-3-2-1012345y15830-1038153图象如右图。 4(1)因为数可以是正数、负数和零,所以x的取值范围为任何实数。 (2)y=x2-2x=(x2-2x+1)

7、-1(x-1)2-1。 因此图象的对称轴为x1,顶点坐标为(1、-1)。 (3)因为开口向上,对称轴x=1,所以在对称轴左侧。即x1时,y的值随x值的增大而增大。 (4)通过观察图象可知。 四、议一议 二次函数的三种表示方式有什么特点?它们之间有什么联系?与同伴进行交流。表示优点缺点表达式变量间关系简捷明了,便于分析计算.需要通过计算,才能得到所需结果表格能直接得到某些具体的对应值不能反映函数整体的变化情况图象直观表示了变量间变化过程和变化趋势.函数值只能是近似值关系表达式是基础,是重点,表格是画图象的关键,图象是在表达式和表格的基础上对函数的总体概括和形象化的表达.生:表格可以直观地找到对应

8、点,图象就是把一对一对的对应点连接起来的,表达式反映出函数与自变量之间的关系。 它们之间的联系是:根据表达式可以求得一对一对的对应点,用光滑的曲线把对应点连接起来即为图象.师:很好。下面我们来更系统地学习它们各自的特点及联系。函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简洁地表示出变量之间的关系这三种表示方式各自有各自的优点,它们服务于不同的需要 它们的联系是三种方式可以互化,由表达式可转化为表格和图象表示,每一种方式都可转化为另两种方式表示。(三)、巩固提高 一、(1)你知道下面每一个图形中各有多少个小圆圈吗?第6个图形中应该有多少个小圆圈?为什么? (2)完成下表:边上的小圆圈数12345小圆圈的总数(3)如果用n表示等边三角形边上的小圆圈数,m表示这个三角形中小圆圈的总数,那么m和n的关系是什么? (四)、课时小结本节课我们经历了用三种方式表示变量之间二次函数关系的过程,体会了三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论