![初中数学全解_第1页](http://file1.renrendoc.com/fileroot_temp2/2021-3/1/5496ee9d-61c5-4b51-9133-f65bfe61407e/5496ee9d-61c5-4b51-9133-f65bfe61407e1.gif)
![初中数学全解_第2页](http://file1.renrendoc.com/fileroot_temp2/2021-3/1/5496ee9d-61c5-4b51-9133-f65bfe61407e/5496ee9d-61c5-4b51-9133-f65bfe61407e2.gif)
![初中数学全解_第3页](http://file1.renrendoc.com/fileroot_temp2/2021-3/1/5496ee9d-61c5-4b51-9133-f65bfe61407e/5496ee9d-61c5-4b51-9133-f65bfe61407e3.gif)
![初中数学全解_第4页](http://file1.renrendoc.com/fileroot_temp2/2021-3/1/5496ee9d-61c5-4b51-9133-f65bfe61407e/5496ee9d-61c5-4b51-9133-f65bfe61407e4.gif)
![初中数学全解_第5页](http://file1.renrendoc.com/fileroot_temp2/2021-3/1/5496ee9d-61c5-4b51-9133-f65bfe61407e/5496ee9d-61c5-4b51-9133-f65bfe61407e5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 初中数学首先要先了解整个初中学的是什么七年级数学上第一章是有理数,第二章是整式加减,第三章是一元一次方程,第四章是图形认识初步七年级数学下第五章是相交线与平行线,第六章是平面直角坐标,第七章是三角形,第八章是二元一次方程,第九章是不等式与不等式组,第十章是数据的收集、整理与描述八年级数学上第十一章是全等三角形,第十二章是轴对称,第十三章是实数,第十四章是一次函数,第十五章是整式的乘除与因式分解八年级数学下第十六章是分式,第十七章是反比例函数,第十八章是勾股定理,第十九章是四边形,第二十章是数据的分析九年级数学上第二十一章是二次根式,第二十二章是一元二次方程,第二十三章是旋转,第二十四章是圆,
2、第二十五章是概率初步九年级数学下第二十六章是二次函数,第二十七章是相似,第二十八章是锐角三角函数,第二十九章是投影与视图。中考数学试卷分析从试卷的考查内容来看,几乎覆盖了数学课程标准所列的重要知识点,更是对初中数学的重要内容:函数,方程与不等式,三角形,四边形,圆,概率统计,图形的分割与拼接,数形结合,代几综合等作了重点考查。其中对初一,初二所学知识的考查比重更大。其中基础题目中选择题第1题,不外是绝对值,相反数,倒数;第2题依然是科学记数法;另外其它的基础题目也分别从相似,概率统计,分式,因式分解,三视图,代数式求值等多方面进行考查。第8题更是从函数图像与几何综合入手,完美的展示了数学科学中
3、数形结合思想的魅力,同时又适当的加入了分情况讨论,以及极限的思想,堪称经典。解答题依然是全等、四边形、方程、函数、圆等知识。其中23题在注重基础的前提下,有很好的完成了动点问题和函数相交问题的结合。最后一道压轴题,以代几综合的形式,从多个方面出击,把数学方法和思想中的以静制动,数形结合,分情况讨论,几何变换与动态结合等,体现的淋漓尽致,浑然天成。总体来看,整套试卷大大的加入了更灵活的知识点的考查,更全面的数学思想和方法的渗透。用多个知识点的有机组合来解决问题,熟练掌握和深刻体会数学思想和方法的精髓,成了学生今后学习的方向和考题的趋向。虽然整套试卷整体上看上去没有太大的改动,然而稳中有变,侧重基
4、础的同时考察了思维能力,增加了部分综合性题目,多处出现用几个知识点才能解决的题目,但却没有出现过难,以及超纲问题,层次鲜明,分配得当。2013北京中考数学试题本套试卷在保持对基础知识的考察力度上,更加重视对数学思想方法和学生综合素质能力的考察,体现了“实践与操作,综合与探究,创新与应用”的命题特点,与中考考试说明中C级要求相呼应。就具体题目而言,第8、12、22、23、24、25题依旧是比较难的题型,其他题型属于基础或者中档题。笔者统计了近四年北京中考数学试题这几道题考查分布:题型年份22013第8题(创新题)立体图形展开图动点函数图象动点函数图象动点函数图象第12题(创新题)数列找规律函数映
5、射规律整点坐标规律函数综合、循环规律第22题(操作与探究)轴对称、正方形平移、等积变换几何坐标化、方程与方程组正方形、等边三角形、全等三角形第23题(综合题)(代数综合)反比例函数、旋转、恒等变形(代数综合)二次函数、一次函数、等腰直角三角形、数形结合(代数综合)二次函数、一次函数、一元二次方程、函数图象平移、数形结合(代数综合)一次函数、二次函数、图形对称、数形结合第24题(综合题)(代几综合)二次函数、等腰直角三角形、分类讨论、数形结合(几何综合)旋转、等腰直角三角形、等边三角形、直角三角形、平行四边形(几何综合)轴对称、等腰三角形、倒角(几何综合)等边三角形、等腰直角三角形、旋转、倒角第
6、25题(综合题)(几何综合)等腰三角形、轴对称、倒角(代几综合)一次函数、圆、平行四边形、分类讨论(代几综合)“新定义”、一次函数、圆、相似(代几综合)一次函数、圆、特殊直角三角形第一章 有理数11 正数和负数14 有理数的乘15 有理数的乘方第二章 整式的加减21 整式22 整式的加减第三章 一元一次方程31 从算式到方程32 解一元一次方程一合并同类项与移项33 解一元一次方程二去括号与去分母34 实际问题与一元一次方程第四章 图形认识初步41 多姿多彩的图形42 直线、射线、线段43 角44 课题学习 设计制作长方体形状的包装纸盒第五章 相交线与平行线5.1 相交线5.1.2 垂线5.1
7、.3 同位角、内错角、同旁内角5.2 平行线及其判定5.2.1 平行线5.3 平行线的性质5.3.1 平行线的性质5.3.2 命题、定理5.4 平移第六章 平面直角坐标系6.1 平面直角坐标系6.2 坐标方法的简单应用6.2 坐标方法的简单应用第七章 三角形7.1 与三角形有关的线段7.1.2 三角形的高、中线与角平分线7.1.3 三角形的稳定性7.2 与三角形有关的角7.2.2 三角形的外角7.3 多变形及其内角和7.4 课题学习 镶嵌第八章 二元一次方程组8.1 二元一次方程组8.2 消元二元一次方程组的解法8.3 实际问题与二元一次方程组*8.4 三元一次方程组解法举例第九章 不等式与不
8、等式组9.1 不等式9.2 实际问题与一元一次不等式9.3 一元一次不等式组第十章 数据的收集、整理与描述10.1 统计调查10.2 直方图10.3 课题学习从数据谈节水第十一章 全等三角形11.1 全等三角形11.2 三角形全等的判定11.3 角的平分线的性质第十二章 轴对称12.1 轴对称12.2 作轴对称图形12.3 等腰三角形第十三章 实数13.1 平方根13.2 立方根13.3 实数第十四章 一次函数14.1 变量与函数14.2 一次函数14.3 用函数观点看方程(组)与不等式14.4 课题学习 选择方案第十五章 整式的乘除与因式分解15.1 整式的乘法15.2 乘法公式15.3 整
9、式的除法第十六章 分式16.1 分式16.2 分式的运算16.3 分式方程第十七章 反比例函数17.1 反比例函数17.2 实际问题与反比例函数第十八章 勾股定理18.1 勾股定理18.2 勾股定理的逆定理第十九章 四边形19.1 平行四边形19.2 特殊的平行四边形19.3 梯形19.4 课题学习 重心第二十章 数据的分析20.1 数据的代表20.2 数据的波动20.3 课题学习 体质健康测试中的数据分析第二十一章 二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减海伦公式复习题21第二十二章 一元二次方程22.1 一元二次方程22.2 降次解一元二次方程黄金分割数2
10、2.3 实际问题与一元二次方程第二十三章 旋转23.1 图形的旋转23.2 中心对称23.3 课题学习 图案设计第二十四章 圆24.1 圆24.2 点、直线、圆和圆的位置关系24.3 正多边形和圆24.4 弧长和扇形面积第二十五章 概率初步25.1 随机事件与概率25.2 用列举法求概率25.3 用频率估计概率25.4 课题学习 键盘上字母的排列规律第二十六章 二次函数261 二次函数及其图像262 用函数观点看一元二次方程263 实际问题与二次函数第二十七章 相似271 图形的相似272 相似三角形273 位似第二十八章 锐角三角函数281 锐角三角函数282 解直角三角形第二十九章 投影与
11、视图291 投影292 三视图293 课题学习 制作立体模型概念定义第一章 实数重点 实数的有关概念及性质,实数的运算一、 重要概念1数的分类及概念 数系表:说明:“分类”的原则:相称(不重、不漏)有标准2非负数:正实数与零的统称。(表为:x0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。3倒数:定义及表示法性质:A. (a1);B. 中,a0;C. 0a1; a1时, 0时,an 0;a0(n是偶数), an 0)(正用、逆用)10根式运算法则:加法法则(合并同类二次根式);乘、除法法则;分母有理化:A. ;B. ;C. .第三章 统计初步重点一、 重要概念1.总体:
12、考察对象的全体。2.个体:总体中每一个考察对象。3.样本:从总体中抽出的一部分个体。4.样本容量:样本中个体的数目。5.众数:一组数据中,出现次数最多的数据。6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)二、 计算方法1.样本平均数: ;若 , ,则 (a常数, , , 接近较整的常数a);加权平均数:;平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。2样本方差: ;若,则 (a接近 、 、 的平均数的较“整”的常数);若 、 、 较“小”较“整”,则 ;样本方差是刻划数据的离散程度(波
13、动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。3样本标准差第四章 直线形重点1相交线与平行线、三角形、四边形的有关概念、判定、性质。一、 直线、相交线、平行线1线段、射线、直线三者的区别与联系 从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。2线段的中点及表示3直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)4两点间的距离(三个距离:点-点;点-线;线-线)5角(平角、周角、直角、锐角、钝角)6互为余角、互为补角及表示方法7角的平分线及其表示8垂线及基本性质(利用它证明“直角三角形中斜边大于直
14、角边”)9对顶角及性质10平行线及判定与性质(互逆)(二者的区别与联系)11常用定理:同平行于一条直线的两条直线平行(传递性);同垂直于一条直线的两条直线平行。12定义、命题、命题的组成13公理、定理14逆命题 二、 三角形 分类:按边分; 按角分二、三角形1定义(包括内、外角)2三角形的边角关系:角与角:内角和及推论;外角和;n边形内角和;n边形外角和。边与边:三角形两边之和大于第三边,两边之差小于第三边。角与边:在同一三角形中,3三角形的主要线段讨论:定义线的交点三角形的心性质 高线中线角平分线中垂线中位线 一般三角形特殊三角形:直角三角形、等腰三角形、等边三角形4特殊三角形(直角三角形、
15、等腰三角形、等边三角形、等腰直角三角形)的判定与性质5全等三角形 一般三角形全等的判定(SAS、ASA、AAS、SSS) 特殊三角形全等的判定:一般方法专用方法6三角形的面积 一般计算公式性质:等底等高的三角形面积相等。7重要辅助线 中点配中点构成中位线;加倍中线;添加辅助平行线8证明方法直接证法:综合法、分析法间接证法反证法:反设归谬结论 证线段相等、角相等常通过证三角形全等证线段倍分关系:加倍法、折半法 证线段和差关系:延结法、截余法 证面积关系:将面积表示出来三、 四边形分类表:1一般性质(角) 内角和:360 顺次连结各边中点得平行四边形。推论1:顺次连结对角线相等的四边形各边中点得菱
16、形。推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。外角和:3602特殊四边形 研究它们的一般方法: 平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定 判定步骤:四边形平行四边形矩形正方形 菱形 对角线的纽带作用:3对称图形 轴对称(定义及性质);中心对称(定义及性质)4有关定理:平行线等分线段定理及其推论1、2 三角形、梯形的中位线定理 平行线间的距离处处相等。(如,找下图中面积相等的三角形)5重要辅助线:常连结四边形的对角线;梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。6作图:任意等分线段。第五章 方程(组)重点
17、一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题)一、 基本概念1方程、方程的解(根)、方程组的解、解方程(组)2 分类:二、 解方程的依据等式性质1a=ba+c=b+c2a=bac=bc (c0)三、 解法1一元一次方程的解法:去分母去括号移项合并同类项 系数化成1解。2 元一次方程组的解法:基本思想:“消元”方法:代入法 加减法四、 一元二次方程1定义及一般形式:2解法:直接开平方法(注意特征)配方法(注意步骤推倒求根公式)公式法:1.化方程为一般式ax2-bx+c=02.确定判别式,计算b2-4ac;3.若b2-4ac0,代入公式 ;若b2-4acb、
18、ab、axba+cb+c abacbc(c0) abacbc(cb,bcac ab,cda+cb+d.5一元一次不等式的解、解一元一次不等式6一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)第七章 相似形重点相似三角形的判定和性质内容提要一、本章的两套定理第一套(比例的有关性质):涉及概念:第四比例项比例中项比的前项、后项,比的内项、外项黄金分割等。第二套:注意:定理中“对应”二字的含义; 平行相似(比例线段)平行。相似三角形性质1对应线段;2对应周长;3对应面积。相关作图作第四比例项;作比例中项。证(解)题规律、辅助线1“等积”变“比例”,“比例”找“相似”。2找相似找不到,找中
19、间比。方法:将等式左右两边的比表示出来。 3添加辅助平行线是获得成比例线段和相似三角形的重要途径。4对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。5对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。第八章 函数及其图象重点正、反比例函数,一次、二次函数的图象和性质。内容提要一、平面直角坐标系1各象限内点的坐标的特点2坐标轴上点的坐标的特点3关于坐标轴、原点对称的点的坐标的特点4坐标平面内点与有序实数对的对应关系二、函数1表示方法:解析法;列表法;图象法。2确定自变量取值范围的原则:使代数式有意义;使实际问题有 意义。3画函数图
20、象:列表;描点;连线。三、几种特殊函数 (定义图象性质)1 正比例函数定义:y=kx(k0) 或y/x=k。图象:直线(过原点)性质:k0,k0,k0时,开口向上;a0时,在对称轴左侧,右侧;a0时,图象位于,y随x;k3 B. x3 C. x3 D. x为任意实数3函数y=的自变量的取值范围是 . A.x-1 B. x-1 C. x1 D. x-14函数y=的自变量的取值范围是 .A.x1 B.x1 C.x1 D.x为任意实数5函数y=的自变量的取值范围是 .A.x5 B.x5 C.x5 D.x为任意实数知识点14:基本函数的概念1下列函数中,正比例函数是 . A. y=-8x B.y=-8
21、x+1 C.y=8x2+1 D.y=2下列函数中,反比例函数是 .A. y=8x2 B.y=8x+1 C.y=-8x D.y=-3下列函数:y=8x2;y=8x+1;y=-8x;y=-.其中,一次函数有 个 .A.1个 B.2个 C.3个 D.4个知识点15:圆的基本性质1如图,四边形ABCD内接于O,已知C=80,则A的度数是 . A. 50 B. 80 C. 90 D. 1002已知:如图,O中, 圆周角BAD=50,则圆周角BCD的度数是 .A.100 B.130 C.80 D.503已知:如图,O中, 圆心角BOD=100,则圆周角BCD的度数是 .A.100 B.130 C.80 D
22、.504已知:如图,四边形ABCD内接于O,则下列结论中正确的是 .A.A+C=180 B.A+C=90C.A+B=180 D.A+B=905半径为5cm的圆中,有一条长为6cm的弦,则圆心到此弦的距离为 . A.3cm B.4cm C.5cm D.6cm6已知:如图,圆周角BAD=50,则圆心角BOD的度数是 . A.100 B.130 C.80 D.507已知:如图,O中,弧AB的度数为100,则圆周角ACB的度数是 .A.100 B.130 C.200 D.508. 已知:如图,O中, 圆周角BCD=130,则圆心角BOD的度数是 .A.100 B.130 C.80 D.509. 在O中
23、,弦AB的长为8cm,圆心O到AB的距离为3cm,则O的半径为 cm.A.3 B.4 C.5 D. 1010. 已知:如图,O中,弧AB的度数为100,则圆周角ACB的度数是 .A.100 B.130 C.200 D.5012在半径为5cm的圆中,有一条弦长为6cm,则圆心到此弦的距离为 .A. 3cm B. 4 cm C.5 cm D.6 cm知识点16:点、直线和圆的位置关系1已知O的半径为10,如果一条直线和圆心O的距离为10,那么这条直线和这个圆的位置关系为 .A.相离 B.相切 C.相交 D.相交或相离2已知圆的半径为6.5cm,直线l和圆心的距离为7cm,那么这条直线和这个圆的位置
24、关系是 .A.相切 B.相离 C.相交 D. 相离或相交3已知圆O的半径为6.5cm,PO=6cm,那么点P和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定4已知圆的半径为6.5cm,直线l和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . A.0个 B.1个 C.2个 D.不能确定5一个圆的周长为a cm,面积为a cm2,如果一条直线到圆心的距离为cm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 不能确定6已知圆的半径为6.5cm,直线l和圆心的距离为6cm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离
25、C.相交 D.不能确定7. 已知圆的半径为6.5cm,直线l和圆心的距离为4cm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 相离或相交8. 已知O的半径为7cm,PO=14cm,则PO的中点和这个圆的位置关系是 .A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定知识点17:圆与圆的位置关系1O1和O2的半径分别为3cm和4cm,若O1O2=10cm,则这两圆的位置关系是 .A. 外离 B. 外切 C. 相交 D. 内切2已知O1、O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的位置关系是 .A.内切 B. 外切 C. 相交 D. 外离3已
26、知O1、O2的半径分别为3cm和5cm,若O1O2=1cm,则这两个圆的位置关系是 .A.外切 B.相交 C. 内切 D. 内含4已知O1、O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的位置关系是 .A.外离 B. 外切 C.相交 D.内切5已知O1、O2的半径分别为3cm和4cm,两圆的一条外公切线长4,则两圆的位置关系是 .A.外切 B. 内切 C.内含 D. 相交6已知O1、O2的半径分别为2cm和6cm,若O1O2=6cm,则这两个圆的位置关系是 .A.外切 B.相交 C. 内切 D. 内含知识点18:公切线问题1如果两圆外离,则公切线的条数为 .A. 1条 B.2条
27、 C.3条 D.4条2如果两圆外切,它们的公切线的条数为 .A. 1条 B. 2条 C.3条 D.4条3如果两圆相交,那么它们的公切线的条数为 .A. 1条 B. 2条 C.3条 D.4条4如果两圆内切,它们的公切线的条数为 .A. 1条 B. 2条 C.3条 D.4条5. 已知O1、O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有 条.A.1条 B. 2条 C. 3条 D. 4条6已知O1、O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的公切线有 条.A.1条 B. 2条 C. 3条 D. 4条知识点19:正多边形和圆1如果O的周长为10cm,那么它的
28、半径为 .A. 5cm B.cm C.10cm D.5cm2正三角形外接圆的半径为2,那么它内切圆的半径为 .A. 2 B. C.1 D.3已知,正方形的边长为2,那么这个正方形内切圆的半径为 .A. 2 B. 1 C. D.4扇形的面积为,半径为2,那么这个扇形的圆心角为= .A.30 B.60 C.90 D. 1205已知,正六边形的半径为R,那么这个正六边形的边长为 .A.R B.R C.R D.6圆的周长为C,那么这个圆的面积S= .A. B. C. D.7正三角形内切圆与外接圆的半径之比为 .A.1:2 B.1: C.:2 D.1:8. 圆的周长为C,那么这个圆的半径R= .A.2 B. C. D. 9.已知,正方形的边长为2,那么这个正方形外接圆的半径为 .A.2 B.4 C.2 D.210已知,正三角形的半径为3,那么这个正三角形的边长为 .A. 3 B. C.3 D.3知识点20:函数图像
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产抵押协议书
- 人工机械合同协议书
- 装修工程补充合同年
- 2025年玉树货运资格证考题
- 2025年扬州下载货运从业资格证模拟考试题
- 2025年山西货运资格考试答案
- 电商和快递合作合同(2篇)
- 西北师范大学图书馆
- 社区服务活动总结
- 总经理办公室工作计划
- 湘美版高中美术选修:绘画全册课件
- 宗教地理与宗教景观课件
- 2023年江苏省南京市中考化学试卷2
- 2023辽宁医药职业学院单招数学模拟试题(附答案解析)
- 2022年武汉协和医院医护人员招聘考试笔试题库及答案解析
- 2023届江苏省南京市联合体市级名校中考联考英语试题(含解析)
- 【完整版】防洪防汛应急(含人员避险转移)预案
- 大型活动标准化执行手册
- 工程勘察设计收费标准快速计算表(EXCEL)
- 甲基乙基酮2-丁酮MSDS危险化学品安全技术说明书
- 【大学】挤出管材(P64)ppt课件
评论
0/150
提交评论