版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初二数学教案二次根式的乘法教学建议知识结构:重点难点分析:本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 . 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础. 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起.本节难点是二次根式的乘法与积的算术平方根的关系及应用 . 积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识 . 要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的条件一定要满
2、足 .教法建议:1. 由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开 . 在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。2. 积的算术平方根的性质和 ( ) 及比较大小等内容都可以第 1页通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要的作用,所以在教学中对于培养的思维品质有着重要的作用
3、。教学设计示例二次根式的乘法( 一 )一、教学目标1. 使学生能够利用积的算术平方根的性质进行二次根式的化简与运算 .2. 会进行简单的二次根式的乘法运算.3.使学生能联系几何课中学习的勾股定理解决实际问题.4.使学生了解比较二次根式的大小的方法.二、教学重点和难点1. 重点:会利用积的算术平方根的性质化简二次根式,会进行简单的二次根式的乘法运算 .2. 难点:二次根式的乘法与积的算术平方根的关系及应用.三、教学方法从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法 .四、教学手段第 2页利用投影仪 .五、教学过程( 一 ) 引入新课观察下面的例子:于是可得到:又如:类似地可以得到:(
4、二 ) 新课积的算术平方根.由前面所举特殊的例子,引导学生总结出:一般地,有 (a0 ,b0).积的算术平方根,等于积中各因式的算术平方根的积.要注意 a0、b0 的条件,因为只有a、 b 都是非负数公式才能成立,这里要启发学生为什么必须a0、 b0. 在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、 b 先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、 b 的两因数的算术平方根,然后再求两个算术平方根的积.根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内 .例 1 把下
5、面各数分解因数:第 3页(1)20; (2)42; (3)63; (4)128.说明:通过本题复习分解因数,为利用积的算术平方根公式化简二次根式打下基础.解:略 .例 2 化简:(1) (2)(3) (4)分析:本题需要用积的算术平方根公式进行化简,题目中的被开方数都是具体数字,学生便于理解,在讲完例2 后可以总结化简的方法.解: (1)(2)(3)(4)说明: (a0 , b0) 可以推广为(a0 , b0, c0).这个小题与本章章头图与章序言的内容有联系,解答了章序言中提出的一个问题. (4) 小题要首先用平方差公式分解成积的形式,才可以用积的算术平方根公式进行化简 .通过例2 可以看出
6、,如果一个二次根式的被开方数中有的因式 ( 或因数 ) 能开得尽方,可以利用积的算术平方根的性质,将这些因式( 或因数 ) 开出来,从而将二次根式化简.第 4页通过例 2,我们根据算术平方根的定义,可得出:, , 等结果,于是可以总结出:一般地,有(a0)关于 a0 时,这种情况将在本章最后一小节专门研究.例 3 化简:(1) ; (2)分析:由例3,让学生注意,在本章中,未加特别说明时,字母一般表示正数,但在实际问题中不一定非是正数不可,如第 (1) 小题, a 可以是负数,根据学生实际情况,可适当引导学生展开小组的讨论,渗透分类讨论的思想.解: (1)(2)说明: x2+y2 这个式子不能
7、再开方了,进一步强调积的算术平方根公式的特点.例 4 如右图,在 ABC 中, C=90,4C=10cm,BC=24cm.求 AB.解: AB2=AC2+BC2(cm)答: AB长 26cm.( 三 ) 小结1. 本节课讲了积的算术平方根的性质(a0 , b0).通过分式的应用,让学生进一步总结,为什么必须有a0、b0第 5页这个条件,而没有这个条件上述性质不成立.问学生:当a0, b0, 也有意义,为什么一定要a0、 b0 呢?引导学生说出:若a0,b0, , 在实数范围内没有意义.公式显然不成立 .2. 利用积的算术平方根的性质,化简二次根式的方法.3. 结合几何课学习的勾股定理,提高学生解决实际问题的能力 .( 四 ) 练习1. 化简:(1) ; (2) ;(3) ; (4) ;(5) ; (6) ;(7) ; (8)2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 血肿的应急处理
- 应收会计年终总结
- 2023年气相色谱仪资金需求报告
- 病例讨论周围神经病
- 3.3.3离子反应 课件高一上学期化学苏教版(2019)必修第一册
- 背影教案反思
- 好玩的冰说课稿
- 开展我为同学办实事活动
- 神经病学临床案例分享
- 安全生产变更索赔管理细则
- 统计学安全培训
- 国家文化安全教育课件
- 提升员工参与度的方法与技巧
- 九年级Unit9大单元教学设计
- 《水字演变及成语》课件
- 山东省汽车维修工时定额(T-SDAMTIA 0001-2023)
- 电脑故障检测报告
- 春节期间的传统烟花和焰火表演
- 绿植花卉租摆及园林养护服务 投标方案(技术方案)
- 2023年6月天津高考英语第二次试卷真题重点词汇清单
- 会展概论-来逢波-习题答案
评论
0/150
提交评论