三元一次方程与应用及答案_第1页
三元一次方程与应用及答案_第2页
三元一次方程与应用及答案_第3页
三元一次方程与应用及答案_第4页
三元一次方程与应用及答案_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 三元一次方程提高一填空题(共1小题)1已知,则a=_,b=_ c=_二解答题(共8小题)2解方程组:3解方程组:4已知:4x3y6z=0,x+2y7z=0(xyz0),求的值5解方程组6(2012包头)某商场用36000元购进甲、乙两种商品,销售完后共获利6000元其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商

2、品最低售价为每件多少元?7(2011贵阳)童星玩具厂工人的工作时间为:每月22天,每天8小时工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算该厂生产A、B两种产品,工人每生产一件A种产品可得报酬1.50元,每生产一件B种产品可得报酬2.80元该厂工人可以选择A、B两种产品中的一种或两种进行生产工人小李生产1件A产品和1件B产品需35分钟;生产3件A产品和2件B产品需85分钟(1)小李生产1件A产品需要_分钟,生产1件B产品需要_分钟(2)求小李每月的工资收入范围8(2010宜宾)为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始某经销商在政策出台前一个月共售出某品牌

3、汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?9(2010娄底)近年来,政府大力投资改善学校的办学条件,并切实加强对学生的安全管理和安全教育某中学新建了一栋教学大楼,进出这栋教学大楼共有2道正门和2道侧门,其中两道正门大小相同,两道

4、侧门大小也相同安全检查中,对4道门进行了测试:当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生;当同时开启一道正门和两道侧门时,3分钟内可以通过840名学生(1)求平均每分钟一道正门和一道侧门分别可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下,全大楼的学生应在5分钟内通过这4道门安全撤离假设这栋教学大楼的教室里最大有1500名学生,试问建造的这4道门是否符合安全规定?请说明理由参考答案与试题解析一填空题(共1小题)1已知,则a=,b= c=24考点:对称式和轮换对称式1748084分析:根据可得+=,同理求出+=,+=

5、,三式相加后再分别减去各式即可得到、和的值,于是a、b和c的值求出解答:解:,+=,同理可知:+=,+=,+=2(+)=,即(+)=,=,即c=24,=,即b=,=,即a=,故答案为、24点评:本题主要考查对称式和轮换对称式的知识点,解答本题的关键是求出+的值,此题难度不大二解答题(共8小题)2解方程组:考点:解三元一次方程组1748084分析:用加减消元法或代入法先把三元一次方程组化为二元一次方程组再求解解答:解:(1)(2)得ac=5,+得a=1,代入得b=2,代入的c=4,原方程组的解为点评:解三元一次方程组关键是先把三元一次方程组化为二元一次方程组,再用解二元一次方程组的知识求解3解方

6、程组:考点:解三元一次方程组1748084专题:计算题分析:可设x=7a,则y=8a,z=9a,所以,代入2x+7y6z=16,可求得a的值,即可求得x、y、z的值解答:解:设x=7a,则y=8a,z=9a,代入2x+7y6z=16得,14a+56a54a=16,解得,a=1,方程组的解为:点评:本题考查了解三元一次方程组,解三元一次方程组的关键是消元解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成该未知数的一元一次方程4已知:4x3y6z=0,x+2y7z=0(xyz0),求的值考点:解三元一次方程组1748084分析:先由题意列出方程组,先用z表示出x,y的值,再

7、代入所求代数式求值即可解答:解:由题意得,解得,代入得:原式=点评:将x、y都转化为关于z的代数式,即可将z消去,得原式的值5解方程组考点:解三元一次方程组1748084专题:计算题分析:由方程可得出x=y,再由x=y得出x=y=z,然后根据=x=y=z,解方程得x=y=z=,从而求出原方程组的解解答:解:根据题意由方程得:x=y,又x=y,y=z=x,=x,解方程得:x=0或,原方程组的解为x=y=z=或0点评:本题考查三元一次方程组的解法解题的关键是根据题意得知x=y=z,解题就容易了6(2012包头)某商场用36000元购进甲、乙两种商品,销售完后共获利6000元其中甲种商品每件进价12

8、0元,售价138元;乙种商品每件进价100元,售价120元(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?考点:二元一次方程组的应用;一元一次不等式的应用1748084分析:(1)题中有两个等量关系:购买A种商品进价+购买B种商品进价=36000,出售A种商品利润+出售B种商品利润=6000,由此可以列出二元一次方程组解决问题(2)根据不等关系:出售A种商品利润+出售B种

9、商品利润8160,可以列出一元一次不等式解决问题解答:解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:,解得:答:该商场购进甲种商品200件,乙种商品120件(2)设乙种商品每件售价z元,根据题意,得120(z100)+2200(138120)8160,解得:z108答:乙种商品最低售价为每件108元点评:本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润=售价进价7(2011贵阳)童星玩具厂工人的工作时间为:每月22天,每天8小时工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算该厂生产A、B两种产品,工人每生产一件A种产品可得报酬1.50元,每

10、生产一件B种产品可得报酬2.80元该厂工人可以选择A、B两种产品中的一种或两种进行生产工人小李生产1件A产品和1件B产品需35分钟;生产3件A产品和2件B产品需85分钟(1)小李生产1件A产品需要15分钟,生产1件B产品需要20分钟(2)求小李每月的工资收入范围考点:二元一次方程组的应用1748084专题:应用题;压轴题分析:(1)生产1件A产品需要的时间+生产1件B产品需要的时间=35分钟,生产3件A产品需要的时间+生产2件B产品需要的时间=85分钟,可根据这两个等量关系来列方程组求解;(2)可根据(1)中计算的生产1件A,B产品需要的时间,根据“每生产一件A种产品,可得报酬1.50元,每生

11、产一件B种产品,可得报酬2.80元”来计算出生产A,B产品每分钟的获利情况,然后根据他的工作时间,求出这两个获利额,那么他的工资范围就应该在这两个获利额之间解答:解:(1)设小李每生产一件A种产品、每生产一件B种产品分别需要x分钟和y分钟,根据题意,得,解得 答:小李每生产一件A种产品、每生产一件B种产品分别需要15分钟和20分钟;(2)w=500+1.5x+2.8(2286015x)20,整理得w=0.6x+1978.4,则w随x的增大而减小,由(1)知小李生产A种产品每分钟可获利1.5015=0.1元,生产B种产品每分钟可获利2.8020=0.14元,若小李全部生产A种产品,每月的工资数目

12、为0.122860+500=1556元,若小李全部生产B种产品,每月的工资数目为0.1422860+500=1978.4元故小李每月的工资数目不低于1556元而不高于1978.4元点评:考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,列出方程组,再求解8(2010宜宾)为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别

13、比政策出台前一个月增长30%和25%(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?考点:二元一次方程组的应用1748084专题:应用题分析:(1)设在政策出台前的一个月销售手动型和自动型汽车分别为x,y台,分别根据“政策出台前一个月共售出某品牌汽车的汽车的手动型和自动型共960台”,“第一个月售出这两种型号的汽车共1228台”作为相等关系列方程组即可求解;(2)由(1)可知政策出台前的

14、一个月销售手动型和自动型汽车数量,根据题意求得第一个月的销售数量手动型汽车是560(1+30%),自动型汽车是400(1+25%),再分别列式计算即可解答:解:(1)设在政策出台前的一个月销售手动型和自动型汽车分别为x,y台,根据题意,得,解得:,答:政策出台前的一个月销售手动型和自动型汽车分别为560台和400台(2)手动型汽车的补贴额为:560(1+30%)85%=291.2(万元);自动型汽车的补贴额为:400(1+25%)95%=225(万元);291.2+225=516.2(万元)答:政策出台后第一个月,政府对这1228台汽车用户共补贴516.2万元点评:解题关键是要读懂题目的意思,

15、根据题目给出的条件,找出合适的等量关系,列出方程组,再求解9(2010娄底)近年来,政府大力投资改善学校的办学条件,并切实加强对学生的安全管理和安全教育某中学新建了一栋教学大楼,进出这栋教学大楼共有2道正门和2道侧门,其中两道正门大小相同,两道侧门大小也相同安全检查中,对4道门进行了测试:当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生;当同时开启一道正门和两道侧门时,3分钟内可以通过840名学生(1)求平均每分钟一道正门和一道侧门分别可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下,全大楼的学生应在5分钟内通过这4道门安全撤离假设这栋教学大楼的教室里最大有1500名学生,试问建造的这4道门是否符合安全规定?请说明理由考点:二元一次方程组的应用1748084分析:(1)设每分钟通过一道正门的学生为x个,每分钟通过一道侧门的学生为y个,则由4分钟通过一道正门和一道侧门时可以通过800名学生可得(x+y)4=800,由开启一道正门和两道侧门时,3分钟内可以通过840名学生可得(x+2y)3=840(2)紧急情况时因学生拥挤,出门的效率将降低20%,则这四道门最多能通过的学生数为(40+160)2(120%)5=160

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论