下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、181 勾股定理(二)教学目标知识与技能1会用勾股定理实行简单的计算。2树立数形结合的思想、分类讨论思想。经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法。情感态度与价值观培养学生思维意识,发展数学理念,体会勾股定理的应用价值。重点勾股定理的简单计算。难点勾股定理的灵活使用教学过程教学设计 与 师生互动备 注第一步:课堂引入复习勾股定理的文字叙述;勾股定理的符号语言及变形。学习勾股定理重在应用。第二步:例习题分析例1(补充)在RtABC,C=90已知a=b=5,求c。已知a=1,c=2, 求b。已知c=17,b=8, 求a。已知a:b=1:2,c=5, 求a。已知b=15,A=3
2、0,求a,c。分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。已知两直角边,求斜边直接用勾股定理。已知斜边和一直角边,求另一直角边,用勾股定理的便形式。已知一边和两边比,求未知边。通过前三题让学生明确在直角三角形中,已知任意两边都能够求出第三边。后两题让学生明确已知一边和两边关系,也能够求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。例2(补充)已知直角三角形的两边长分别为5和12,求第三边。分析:已知两边中较大边12可能是直角边,也可能是斜边,所以应分两种情况分别进形计算。让学生知道考虑问题要全面,体会分类讨论思想。例3(补充)已知:如图,等边ABC
3、的边长是6cm。求等边ABC的高。 求SABC。分析:勾股定理的使用范围是在直角三角形中,所以注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。欲求高CD,可将其置身于RtADC或RtBDC中,但只有一边已知,根据等腰三角形三线合一性质,可求AD=CD=AB=3cm,则此题可解。第三步:课堂练习1填空题在RtABC,C=90,a=8,b=15,则c= 。在RtABC,B=90,a=3,b=4,则c= 。在RtABC,C=90,c=10,a:b=3:4,则a= ,b= 。一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。已知直角三角形的两边长分别为3cm和5cm,则第三边长为 。已知等边三角形的边长为2cm,则它的高为 ,面积为 。2已知:如图,在ABC中,C=60,AB=,AC=4,AD是BC边上的高,求BC的长。 3已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。参考答案117; ; 6,8; 6,8,10; 4或; ,; 28; 348。第四步:课后练习1填空题在RtABC,C=90,如果a=7,c=25,则b= 。如果A=30,a=4,则b= 。如果A=45,a=3,则c= 。如果c=10,a-b=2,则b= 。如果a、b、c是连续整数,则a+b+c= 。如果b=8,a:c=3:5,则c= 。2已知:如图,四边形ABCD中,ADBC,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44853-2024城市轨道交通车辆电空制动系统
- GB/T 43133.2-2024运输包装可重复使用的塑料周转箱第2部分:试验通用规范
- 2024年度文化传播公司活动策划合同
- 2024年度楼梯建筑项目施工合同
- 2024年度安置房买卖与旧区改造合同
- 《黄金矿产投资报告》课件
- 《食物的消化与吸收》课件
- 2024年度船舶玻璃钢防腐工程合同
- 2024年度电线电缆产品销售与售后服务合同3篇
- 2024年度港口建设中破桩头劳务合同
- 2023年贵州省贵阳市公安局公务员考试《行政职业能力测验》历年真题及详解
- 营养专科护士总结汇报
- 2024年职业病防治考试题库附答案(版)
- 乒乓球女单世界第一首位零零后孙颖莎介绍课件
- 创新实践(理论)学习通超星期末考试答案章节答案2024年
- 2024实施就业优先战略促进高质量充分就业的意见(就业是最基本的民生)
- 英语我的家乡甘肃酒泉课件
- 天津轨道交通集团有限公司招聘笔试题库2024
- 职业技能竞赛-网络与信息安全管理员理论题库(附参考答案)
- 语文园地四 教学设计2024~2025学年一年级语文上册统编版
- 三年级上册道德与法治第3课《做学习的主人》教案教学设计(第二课时)
评论
0/150
提交评论