储粉仓粉位高度控制系统_第1页
储粉仓粉位高度控制系统_第2页
储粉仓粉位高度控制系统_第3页
储粉仓粉位高度控制系统_第4页
储粉仓粉位高度控制系统_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、. 课 程 设 计 说 明 书学生姓名:学 号:学 院:自动化工程学院班 级:题 目:储粉仓粉位高度控制系统 指导教师: 职称: 2015年6月2 日 . 目录 一、设计方案.1二、工作原理12.1 流程框图12.2 工作原理1三、硬件设计23.1 传感器23.2 单片机电路设计33.2.1 AT89C51功能及引脚分布33.2.2 振荡方式的选择53.2.3 复位电路的设计53.3 AD转换电路的设计63.3.1 ADC0809主要信号引脚的功能63.3.2 ADC0809与AT851单片机的连接73.3.3 转换数据的传送83.4 键盘输入电路的设计93.4.1 按键去抖93.4.2 键盘

2、扫描方法103.5 数显输出电路的设计11四、软件设计部分124.1 原理图的绘制124.2 流程图的设计13五、参考文献13 1. 设计方案利用单片机为控制核心,设计一个对锅炉煤粉粉位进行监控的系统。根据监控对象的特征,要求实时检测煤粉的粉位高度,并与开始预设定值做比较,由单片机控制固态继电器的开断进行粉位的调整,最终达到粉位的预设定值。检测值若高于上限设定值时,要求报警,断开继电器,控制送粉器停止送粉;检测值若低于下限设定值,要求报警,开启继电器,控制送粉器开始送粉。现场实时显示测量值,从而实现对煤粉粉位的监控。2.1流程框图煤粉粉位ZNZC煤粉仓重锤料位计ADC08098051键盘蜂鸣器

3、存储器数码管DAC7512N/50送粉器 图1锅炉粉位自动控制系统工作流程框图2.2工作原理基于单片机实现的液位控制器是以AT8C951芯片为核心,由键盘、数码显示、AD转换、传感器,电源和控制部分等组成。工作过程如下:煤粉粉位位发生变化时,由测量粉位的传感器ZNZC煤粉仓重锤料位计测出,并转化为4-20MA标准信号送入AD转换器,AD转换器把模拟信号变成数字信号量,由单片机进行实时数据采集,并进行处理,根据设定要求控制输出,同时数码管显示粉位高度。通过键盘设置粉位高、低和限定值以及强制报警值。该系统控制器特点是直观地显示粉位高度,可任意控制粉位高度。3.硬件设计液位控制器的硬件主要包括由传感

4、器(带变送器)、单片机、键盘电路、数码显示电路、AD转换器和输出控制电路等。3.1传感器 ZNZC重锤式料位计主要用于测量料仓及各种储料罐中的物料高度, 使用户可靠的掌握料仓中的料位. 可用来测量各种复杂环境料仓的料位,包括粉状,颗粒状及块状物料等介质. 广泛应用于化工,食品,冶金,水电,水泥,塑料,采矿及其他工业领域.。总览重锤式料位计由机械传动部分,仪表控制部分,探测锤三部分组成。特点设计结构新颖,功能强大.可实现24小时自动测量。 图1 ZNZC引脚图 表1 ZNZC传感器参数参考操作条件环境温度: -5+60最小介质密度: 300g/L (更小密度需定制)最小测量时间间隔:测量高度 5

5、m 3m测量高度 10m 6m测量高度 20m 12m测量高度 30m 18m机械传动部分测量范围:最大30m测量精度:0.08m测量速度: 0.15m/s钢丝绳直径: 2mm钢丝绳材质: 304不锈钢探测锤重量: 2Kg整机重量: 30Kg仪表控制部分供电电压: AC220V,50Hz功耗: 75W信号输出: 420mA显示: 4位LCD重量: 3Kg 3.2 单片机电路设计3.2.1 AT89C51功能及引脚分布本次课程设计基于AT89C51单片机, AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,俗称单片机。AT89C2051是一种带2K字节

6、闪烁可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器。AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。引脚分布如下图3.2.1所示:图3.2.1 AT89C51及引脚分布VCC:供电电压。GND:接地。P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它

7、可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电

8、流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口也可作为AT89C51的一些特殊功能口,如下表所示:管脚 备选功能P3.0 RXD(串行

9、输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对

10、外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET

11、;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。XTAL2:来自反向振荡器的输出。3.2.2 振荡方式的选择 本次设计用到的是内部振荡方式,这种方式下在X1和X2两端跨接石英晶体及两个电容,如下图所示,这样就和内部的反响放大器构成稳定的自己振荡器。电容C1和C2通常取30pF,可稳定频率并对正当频率有微调作用。接线图如下:图3.2.2 内部振荡方式3.2.3 复位电路的设计复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。为可靠起见,电源稳定后还

12、要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。图1所示的RC复位电路可以实现上述基本功能,图3为其输入-输出特性。但解决不了电源毛刺(A点)和电源缓慢下降(电池电压不足)等问题 而且调整 RC常数改变延时会令驱动能力变差。左边的电路为高电平复位有效右边为低电平Sm为手动复位开关 Ch可避免高频谐波对电路的干扰。电路图如下:图3.2.3 复位电路3.3 AD转换电路的设计 本次课程设计使用AD转换器件是ADC0809,ADC0809是8路模拟信号的分时采集,片内有8路模拟选通开关,以及相应的通道抵制锁存用译码电路,其转换时间为100s左右,ADC0809芯

13、片为28引脚为双列直插式封装,其引脚分布图如下:图3.3 AD0809引脚图3.3.1 A/DC0809主要信号引脚的功能IN7IN0模拟量输入通道ALE地址锁存允许信号。对应ALE上跳沿,A、B、C地址状态送入地址锁存器中。START转换启动信号。START上升沿时,复位ADC0809;START下降沿时启动芯片,开始进行A/D转换;在A/D转换期间,START应保持 低电平。本信号有时简写为ST.A、B、C地址线。 通道端口选择线,A为低地址,C为高地址,引脚图中为ADDA,ADDB和ADDC。其地址状态与通道对应关系见表9-1。CLK时钟信号。ADC0809的内部没有时钟电路,所需时钟信

14、号由外界提供,因此有时钟信号引脚。通常使用频率为500KHz的时钟信号EOC转换结束信号。EOC=0,正在进行转换;EOC=1,转换结束。使用中该状态信号即可作为查询的状态标志,又可作为中断请求信号使用。D7D0数据输出线。为三态缓冲输出形式,可以和单片机的数据线直接相连。D0为最低位,D7为最高OE输出允许信号。用于控制三态输出锁存器向单片机输出转换得到的数据。OE=0,输出数据线呈高阻;OE=1,输出转换得到的数据。Vcc +5V电源。Vref参考电源参考电压用来与输入的模拟信号进行比较,作为逐次逼近的基准。其典型值为+5V(Vref(+)=+5V, Vref(-)=-5V).3.3.2

15、A/DC0809与AT851单片机的连接电路连接主要涉及两个问题。一是8路模拟信号通道的选择,二是A/D转换完成后转换数据的传送。ADC0809与AT89C51单片机的连接图如下:图3.3.2.1 ADC0809与AT89C51单片机的接线图如图3.2.2.2所示模拟通道选择信号A、B、C分别接最低三位地址A0、A1、A2即(P0.0、P0.1、P0.2),而地址锁存允许信号ALE由P2.0控制,则8路模拟通道的地址为0FEF8H0FEFFH.此外,通道地址选择以WR作写选通信号,这一部分电路连接如图所示。图3.2.2.2 模拟通道选择信号接线图从图中可以看到,把ALE信号与START信号接在

16、一起了,这样连接使得在信号的前沿写入(锁存)通道地址,紧接着在其后沿就启动转换。启动A/D转换只需要一条MOVX指令。在此之前,要将P2.0清零并将最低三位与所选择的通道好像对应的口地址送入数据指针DPTR中。例如要选择IN0通道时,可采用如下两条指令,即可启动A/D转换: MOV DPTR , #FE00H ;送入0809的口地址 MOVX DPTR , A ;启动A/D转换(IN0)注意:此处的A与A/D转换无关,可为任意值。3.3.3 转换数据的传送A/D转换后得到的数据应及时传送给单片机进行处理。数据传送的关键问题是如何确认A/D转换的完成,因为只有确认完成后,才能进行传送。为此可采用

17、下述三种方式。1)定时传送方式对于一种A/D转换其来说,转换时间作为一项技术指标是已知的和固定的。例如ADC0809转换时间为128s,相当于6MHz的MCS-51单片机共64个机器周期。可据此设计一个延时子程序,A/D转换启动后即调用此子程序,延迟时间一到,转换肯定已经完成了,接着就可进行数据传送。2)查询方式A/D转换芯片由表明转换完成的状态信号,例如ADC0809的EOC端。因此可以用查询方式,测试EOC的状态,即可却只转换是否完成,并接着进行数据传送。3)中断方式把表明转换完成的状态信号(EOC)作为中断请求信号,以中断方式进行数据传送。不管使用上述那种方式,只要一旦确定转换完成,即可

18、通过指令进行数据传送。首先送出口地址并以信号有效时,OE信号即有效,把转换数据送上数据总线,供单片机接受。不管使用上述那种方式,只要一旦确认转换结束,便可通过指令进行数据传送。所用的指令为MOVX 读指令,仍以图9-17所示为例,则有 MOV DPTR , #FE00H MOVX A , DPTR该指令在送出有效口地址的同时,发出有效信号,使0809的输出允许信号OE有效,从而打开三态门输出,是转换后的数据通过数据总线送入A累加器中。这里需要说明的示,ADC0809的三个地址端A、B、C即可如前所述与地址线相连,也可与数据线相连,例如与D0D2相连。这是启动A/D转换的指令与上述类似,只不过A

19、的内容不能为任意数,而必须和所选输入通道号IN0IN7相一致。例如当A、B、C分别与D0、D1、D2相连时,启动IN7的A/D转换指令如下:MOV DPTR, #FE00H ;送入0809的口地址MOV A ,#07H ;D2D1D0=111选择IN7通道MOVX DPTR, A ;启动A/D转换3.4 键盘输入电路的设计3.4.1 按键去抖通常的按键所用开关为机械弹性开关,当机械触点断开、闭合时,电压信号小型如下图。由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。因而在闭合及断开的瞬间均伴随有一连串的抖动,如下图。抖动时间的长短由按键的机械特性决定,

20、一般为5ms10ms。按键稳定闭合时间的长短则是由操作人员的按键动作决定的,一般为零点几秒至数秒。键抖动会引起一次按键被误读多次。为确保CPU对键的一次闭合仅作一次处理,必须去除键抖动。在键闭合稳定时读取键的状态,并且必须判别到键释放稳定后再作处理。按键的抖动,可用硬件或软件两种方法。(1)硬件消抖:在键数较少时可用硬件方法消除键抖动。下图所示的RS触发器为常用的硬件去抖。图3.3.1 RS触发器硬件消抖图中两个“与非”门构成一个RS触发器。当按键未按下时,输出为1;当键按下时,输出为0。此时即使用按键的机械性能,使按键因弹性抖动而产生瞬时断开(抖动跳开B),中要按键不返回原始状态A,双稳态电路的状态不改变,输出保持为0,不会产生抖动的波形。也就是说,即使B点的电压波形是抖动的,但经双稳态电路之后,其输出为正规的矩形波。这一点通过分析RS触发器的工作过程很容易

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论