面积相关问题(1)_第1页
面积相关问题(1)_第2页
面积相关问题(1)_第3页
面积相关问题(1)_第4页
面积相关问题(1)_第5页
已阅读5页,还剩105页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2017年08月07日风的初中数学组卷一解答题(共30小题)1如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(2,0),点C(8,0),与y轴交于点A(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NMAC,交AB于点M,当AMN面积最大时,求N点的坐标简单的补形作差求面积。;(3)连接OM,在(2)的结论下,求OM与AC的数量关系2如图所示,在平面直角坐标系中xOy中,抛物线y=ax22ax3a(a0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一

2、个交点为D,且CD=4AC(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若ACE的面积的最大值为,求a的值给定面积最值求末知数值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由3如图,抛物线y=ax2+bx+2经过点A(1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使SABC=SABD?若存在请直接给出点D坐标;若不存在请说明理由面积关

3、系作为相等关系解决问题。;(3)将直线BC绕点B顺时针旋转45,与抛物线交于另一点E,求BE的长4如图,抛物线y=ax2+bx2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(2,0),点P为抛物线上的一个动点,过点P作PDx轴于点D,交直线BC于点E(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积简单的补形作差求面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由【温馨提示:考生

4、可以根据题意,在备用图中补充图形,以便探究】5如图甲,直线y=x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0x3时,在抛物线上求一点E,使CBE的面积有最大值(图乙、丙供画图探究求三角形最大面积)6已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且ab()求抛物线顶点Q的坐标(用含a的代数式表示);()说明直线与抛物线有两个交

5、点;()直线与抛物线的另一个交点记为N()若1a,求线段MN长度的取值范围;()求QMN面积的最小值7如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为点B(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;连接BC、CD,设直线BD交线段AC于点E,CDE的面积为S1,BCE的面积为S2,求的最大值求面积关系的最值问题;过点D作DFAC,垂足为点F,连接CD,是否存在点D,使得CDF中的某个角恰好等于BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由8在平面直角坐标系xOy中,规定:抛物线

6、y=a(xh)2+k的伴随直线为y=a(xh)+k例如:抛物线y=2(x+1)23的伴随直线为y=2(x+1)3,即y=2x1(1)在上面规定下,抛物线y=(x+1)24的顶点坐标为 ,伴随直线为 ,抛物线y=(x+1)24与其伴随直线的交点坐标为 和 ;(2)如图,顶点在第一象限的抛物线y=m(x1)24m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D若CAB=90,求m的值;如果点P(x,y)是直线BC上方抛物线上的一个动点,PBC的面积记为S,当S取得最大值时,求m的值求图形的面积最值问题9如图,抛物线y=a(x1)(x3)与x轴交于A,B两点,与y轴的正半轴交于点C

7、,其顶点为D(1)写出C,D两点的坐标(用含a的式子表示);(2)设SBCD:SABD=k,求k的值;(3)当BCD是直角三角形时,求对应抛物线的解析式10抛物线y=4x22ax+b与x轴相交于A(x1,0),B(x2,0)(0x1x2)两点,与y轴交于点C(1)设AB=2,tanABC=4,求该抛物线的解析式;(2)在(1)中,若点D为直线BC下方抛物线上一动点,当BCD的面积最大时,求点D的坐标函数法求面积的最值。;(3)是否存在整数a,b使得1x12和1x22同时成立,请证明你的结论11已知:如图所示,在平面直角坐标系xOy中,四边形OABC是矩形,OA=4,OC=3,动点P从点C出发,

8、沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动设点P、点Q的运动时间为t(s)(1)当t=1s时,求经过点O,P,A三点的抛物线的解析式;(2)当t=2s时,求tanQPA的值;(3)当线段PQ与线段AB相交于点M,且BM=2AM时,求t(s)的值;(4)连接CQ,当点P,Q在运动过程中,记CQP与矩形OABC重叠部分的面积为S,求S与t的函数关系式动态问题(形动)求图形面积12如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点(1)求这条抛物线的表达式及

9、其顶点坐标;(2)当点P移动到抛物线的什么位置时,使得PAB=75,求出此时点P的坐标;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动,与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止,当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少动态问题(点动)求图形面积。?13如图,抛物线y=ax2+bx2与x轴交于A、B两点,与y轴交于C点,已知A(3,0),且M(1,)是抛物线上另一点(1)求a、b的值;(2)连结AC,设点P是y轴上任一点,若以

10、P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标;(3)若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N作NHAC交抛物线的对称轴于H点设ON=t,ONH的面积为S,求S与t之间的函数关系式动态问题(点动)求图形的面积。14如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(1,0)、D(2,3),抛物线与x轴的另一交点为E经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F点P在直线l上方抛物线上一动点,设点P的横坐标为t(1)求抛物线的解析式;(2)当t何值时,PFE的面积最大?并求最大值的立方根动态问题(点动)

11、求图形的面积。;(3)是否存在点P使PAE为直角三角形?若存在,求出t的值;若不存在,说明理由15如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(1,0),B(4,0),C(0,4)三点,点P是直线BC下方抛物线上一动点(1)求这个二次函数的解析式;(2)是否存在点P,使POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,PBC面积最大,求出此时P点坐标和PBC的最大面积动态问题(点动)求图形面积。16如图1,抛物线C1:y=x2+ax与C2:y=x2+bx相交于点O、C,C1与C2分别交x轴于点B、A,且B为线段AO的中点(1)求

12、 的值;(2)若OCAC,求OAC的面积;(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:点P为抛物线C2对称轴l上一动点,当PAC的周长最小时,求点P的坐标;如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由动态问题(点动)求图形面积并求图形面积的最大值。17如图1,抛物线y=x2+bx+c经过A(2,0)、B(0,2)两点,点C在y轴上,ABC为等边三角形,点D从点A出发,沿AB方向以每秒2个单位长度的速度向终点B运动,设运动时间为t秒(t0),过点D作DEAC于点E,以DE为边作矩形DEG

13、F,使点F在x轴上,点G在AC或AC的延长线上(1)求抛物线的解析式;(2)将矩形DEGF沿GF所在直线翻折,得矩形DEGF,当点D的对称点D落在抛物线上时,求此时点D的坐标;(3)如图2,在x轴上有一点M(2,0),连接BM、CM,在点D的运动过程中,设矩形DEGF与四边形ABMC重叠部分的面积为S,直接写出S与t之间的函数关系式,并写出自变量t的取值范围动态问题(形动)求图形面积。18如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D作DCx轴,垂足为C(1)求抛物线的表达式;(2)点P在线段OC上(

14、不与点O、C重合),过P作PNx轴,交直线AD于M,交抛物线于点N,连接CM,求PCM面积的最大值动态问题(点动)运用公式法求图形面积并求最值。;(3)若P是x轴正半轴上的一动点,设OP的长为t,是否存在t,使以点M、C、D、N为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由19如图,已知二次函数y=ax2+bx+c(a0)的图象经过A(1,0)、B(4,0)、C(0,2)三点(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足DBA=CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F

15、,若PEB、CEF的面积分别为S1、S2,求S1S2的最大值动态问题(点动)比较复杂的求图形面积问题,属于面积关系类。20如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值动态问题(点动)求图形面积,利用公式法求图形

16、面积。;(3)在点M运动过程中,是否存在某一时刻t,使MBN为直角三角形?若存在,求出t值;若不存在,请说明理由21如图,已知抛物线y=ax2+c过点(2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C(1)求抛物线的解析式;(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(、=),并证明你的判断;(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得QBF的面积最大?若存在,求出点Q的坐标及QBF的最大面积

17、;若不存在,请说明理由动态问题(点动)求图表面积并求最大值,但此题属于变式问题。22已知抛物线y1=ax2+bx4(a0)与x轴交于点A(1,0)和点B(4,0)(1)求抛物线y1的函数解析式;(2)如图,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DEy轴交抛物线y1于点E,求线段DE的长度的最大值;(2)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,P与直线BC相切,且SP:SDFH=2,求满足条件的所有点P的坐标综合题中的面积关系 23已知抛物线y=ax2+

18、bx+c,其中2a=b0c,且a+b+c=0(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点设抛物线y=ax2+bx+c的对称轴与x轴相交于E如果在对称轴左侧的抛物线上存在点F,使得ADF与BOC相似,并且SADF=SADE,求此时抛物线的表达式综合题中的面积关系24如图1,经过原点O的抛物线y=ax2+bx(a0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t)(1)求这条抛物线的表达式;(2)在第四象

19、限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标分形作和求图形面积。属于面积关系的一种类型。;(3)如图2,若点M在这条抛物线上,且MBO=ABO,在(2)的条件下,是否存在点P,使得POCMOB?若存在,求出点P的坐标;若不存在,请说明理由25抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0)(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PMy轴,分别与x轴和直线CD交于点M、N连结PC、PD,如图1,在点P运动过程中,PCD的面积是否存在最大值?若存在,求出这个最大值;若不

20、存在,说明理由分形作和求图形的面积,并求面积的最大值;连结PB,过点C作CQPM,垂足为点Q,如图2,是否存在点P,使得CNQ与PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由26如图所示,在平面直角坐标系中,C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点已知抛物线开口向上,与C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8SQAB,且QABOBN成立?若存在,请求出Q点的坐标;

21、若不存在,请说明理由综合题中的面积关系;外加其它条件求点的坐标。27如图,二次函数y=x2+bx+c的图象与x轴交于 A、B两点,与y轴交于点C,OB=OC点D在函数图象上,CDx轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点(1)求b、c的值;(2)如图,连接BE,线段OC上的点F关于直线l的对称点F恰好在线段BE上,求点F的坐标;(3)如图,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N试问:抛物线上是否存在点Q,使得PQN与APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由综合题中的面积关系;外加其它条件求点的坐标

22、。28如图1,在平面直角坐标系中,已知抛物线y=ax2+bx5与x轴交于A(1,0),B(5,0)两点,与y轴交于点C(1)求抛物线的函数表达式;(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与ABC相似,求点D的坐标;(3)如图2,CEx轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积分形作和求面符号并求面积的最大值。;(4)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,

23、Q的坐标29在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点C,其顶点记为M,自变量x=1和x=5对应的函数值相等若点M在直线l:y=12x+16上,点(3,4)在抛物线上(1)求该抛物线的解析式;(2)设y=ax2+bx+c对称轴右侧x轴上方的图象上任一点为P,在x轴上有一点A(,0),试比较锐角PCO与ACO的大小(不必证明),并写出相应的P点横坐标x的取值范围(3)直线l与抛物线另一交点记为B,Q为线段BM上一动点(点Q不与M重合),设Q点坐标为(t,n),过Q作QHx轴于点H,将以点Q,H,O,C为顶点的四边形的面积S表示为t的函数,标出自变量t的取值范围,并求出S可能

24、取得的最大值30如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与x轴交于A(1,0),B(2,0)两点,与y轴交于点C(1)求该抛物线的解析式;(2)直线y=x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC求n的值;连接AC,CD,线段AC与线段DF交于点G,AGF与CGD是否全等?请说明理由;(3)直线y=m(m0)与该抛物线的交点为M,N(点M在点N的左侧),点 M关于y轴的对称点为点M,点H的坐标为(1,0)若四边形OMNH的面积为求点H到OM的距离d的值面积关系。2017年08月07日风的初中数学组卷参考答案与试题解析一解答题(共30小题

25、)1(2017白银)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(2,0),点C(8,0),与y轴交于点A(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NMAC,交AB于点M,当AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;(2)可设N(n,0),则可用n表示出ABN的面积,由NMAC,可求得,则可用n表示出AMN的面积,再利用二次函数的性质可求得其面积最大时n的值,即可求得N点的坐标;(3)由N点坐标

26、可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在RtAOB和RtAOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系【解答】解:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,二次函数的表达式为y=x2+x+4;(2)设点N的坐标为(n,0)(2n8),则BN=n+2,CN=8nB(2,0),C(8,0),BC=10,在y=x2+x+4中令x=0,可解得y=4,点A(0,4),OA=4,SABN=BNOA=(n+2)4=2(n+2),MNAC,=,0,当n=3时,即N(3,0)时,AMN的面积最大;(3)当N(3,0)时,N为B

27、C边中点,MNAC,M为AB边中点,OM=AB,AB=2,AC=4,AB=AC,OM=AC【点评】本题为二次函数的综合应用,涉及待定系数法、平行线分线段成比例、三角形的面积、二次函数的性质、直角三角形的性质、勾股定理等知识在(1)中注意待定系数法的应用,在(2)中找到AMN和ABN的面积之间的关系是解题的关键,在(3)中确定出AB为OM和AC的中间“桥梁”是解题的关键本题考查知识点较多,综合性较强,难度适中2(2017天水)如图所示,在平面直角坐标系中xOy中,抛物线y=ax22ax3a(a0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物

28、线的另一个交点为D,且CD=4AC(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若ACE的面积的最大值为,求a的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由【分析】(1)解方程即可得到结论;(2)根据直线l:y=kx+b过A(1,0),得到直线l:y=kx+k,解方程得到点D的横坐标为4,求得k=a,得到直线l的函数表达式为y=ax+a;(3)过E作EFy轴交直线l于F,设E(x,ax22ax3a),得到F

29、(x,ax+a),求出EF=ax23ax4a,根据三角形的面积公式列方程即可得到结论;(4)令ax22ax3a=ax+a,即ax23ax4a=0,得到D(4,5a),设P(1,m),若AD是矩形ADPQ的一条边,若AD是矩形APDQ的对角线,列方程即可得到结论【解答】解:(1)当y=0时,ax22ax3a=0,解得:x1=1,x2=3,A(1,0),B(3,0),对称轴为直线x=1;(2)直线l:y=kx+b过A(1,0),0=k+b,即k=b,直线l:y=kx+k,抛物线与直线l交于点A,D,ax22ax3a=kx+k,即ax2(2a+k)x3ak=0,CD=4AC,点D的横坐标为4,3=1

30、4,k=a,直线l的函数表达式为y=ax+a;(3)过E作EFy轴交直线l于F,设E(x,ax22ax3a),则F(x,ax+a),EF=ax22ax3aaxa=ax23ax4a,SACE=SAFESCEF=(ax23ax4a)(x+1)(ax23ax4a)x=(ax23ax4a)=a(x)2a,ACE的面积的最大值=a,ACE的面积的最大值为,a=,解得a=;(4)以点A、D、P、Q为顶点的四边形能成为矩形,令ax22ax3a=ax+a,即ax23ax4a=0,解得:x1=1,x2=4,D(4,5a),抛物线的对称轴为直线x=1,设P(1,m),若AD是矩形ADPQ的一条边,则易得Q(4,2

31、1a),m=21a+5a=26a,则P(1,26a),四边形ADPQ是矩形,ADP=90,AD2+PD2=AP2,52+(5a)2+32+(265a)2=22+(26a)2,即a2=,a0,a=,P(1,);若AD是矩形APDQ的对角线,则易得Q(2,3a),m=5a(3a)=8a,则P(1,8a),四边形APDQ是矩形,APD=90,AP2+PD2=AD2,(11)2+(8a)2+(14)+(8a5a)2=52+(5a)2,即a2=,a0,a=,P(1,4),综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点P(1,)或(1,4)【点评】本题考查了待定系数法求函数的解析式,三角形面积的计

32、算,平行四边形的性质,勾股定理,正确的作出辅助线是解题的关键3(2017深圳)如图,抛物线y=ax2+bx+2经过点A(1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使SABC=SABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45,与抛物线交于另一点E,求BE的长【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BCAC,设直线AC和BE交于点F,过F作FM

33、x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长【解答】解:(1)抛物线y=ax2+bx+2经过点A(1,0),B(4,0),解得,抛物线解析式为y=x2+x+2;(2)由题意可知C(0,2),A(1,0),B(4,0),AB=5,OC=2,SABC=ABOC=52=5,SABC=SABD,SABD=5=,设D(x,y),AB|y|=5|y|=,解得|y|=3,当y=3时,由x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=3时,由x2+x+2=3

34、,解得x=2(舍去)或x=5,此时D点坐标为(5,3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,3);(3)AO=1,OC=2,OB=4,AB=5,AC=,BC=2,AC2+BC2=AB2,ABC为直角三角形,即BCAC,如图,设直线AC与直线BE交于点F,过F作FMx轴于点M,由题意可知FBC=45,CFB=45,CF=BC=2,=,即=,解得OM=2,=,即=,解得FM=6,F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,直线BE解析式为y=3x+12,联立直线BE和抛物线解析式可得,解得或,E(5,3),BE=【点评】本题为二次函数的

35、综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识在(1)中注意待定系数法的应用,在(2)中求得D点的纵坐标是解题的关键,在(3)中由条件求得直线BE的解析式是解题的关键本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度4(2017营口)如图,抛物线y=ax2+bx2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(2,0),点P为抛物线上的一个动点,过点P作PDx轴于点D,交直线BC于点E(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形PO

36、BE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】【分析】(1)由抛物线y=ax2+bx2的对称轴是直线x=1,A(2,0)在抛物线上,于是列方程即可得到结论;(2)根据函数解析式得到B(4,0),C(0,2),求得BC的解析式为y=x2,设D(m,0),得到E(m,m2),P(m,m2m2),根据已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5,),E(5,)

37、,根据三角形的面积公式即可得到结论;(3)设M(n,n2),以BD为对角线,根据菱形的性质得到MN垂直平分BD,求得n=4+,于是得到N(,);以BD为边,根据菱形的性质得到MNBD,MN=BD=MD=1,过M作MHx轴于H,根据勾股定理列方程即可得到结论【解答】解:(1)抛物线y=ax2+bx2的对称轴是直线x=1,A(2,0)在抛物线上,解得:,抛物线解析式为y=x2x2;(2)令y=x2x2=0,解得:x1=2,x2=4,当x=0时,y=2,B(4,0),C(0,2),设BC的解析式为y=kx+b,则,解得:,y=x2,设D(m,0),DPy轴,E(m,m2),P(m,m2m2),OD=

38、4PE,m=4(m2m2m+2),m=5,m=0(舍去),D(5,0),P(5,),E(5,),四边形POBE的面积=SOPDSEBD=51=;(3)存在,设M(n,n2),以BD为对角线,如图1,四边形BNDM是菱形,MN垂直平分BD,n=4+,M(,),M,N关于x轴对称,N(,);以BD为边,如图2,四边形BNDM是菱形,MNBD,MN=BD=MD=1,过M作MHx轴于H,MH2+DH2=DM2,即(n2)2+(n5)2=12,n1=4(不合题意),n2=5.6,N(4.6,),同理(n2)2+(4n)2=1,n1=4+(不合题意,舍去),n2=4,N(5,),以BD为边,如图3,过M作

39、MHx轴于H,MH2+BH2=BM2,即(n2)2+(n4)2=12,n1=4+,n2=4(不合题意,舍去),N(5+,),综上所述,当N(,)或(4.6,)或(5,)或(5+,),以点B,D,M,N为顶点的四边形是菱形【点评】本题主要考查的是二次函数的综合应用,本题主要涉及了待定系数法求一次函数、二次函数的解析式、勾股定理,三角形的面积公式、菱形的性质、根据题意画出符合条件的图形是解题的关键5(2017安顺)如图甲,直线y=x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在

40、点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0x3时,在抛物线上求一点E,使CBE的面积有最大值(图乙、丙供画图探究)【分析】(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EFx轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出CBE的面积,利用二次函数的

41、性质可求得其取得最大值时E点的坐标【解答】解:(1)直线y=x+3与x轴、y轴分别交于点B、点C,B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,抛物线解析式为y=x24x+3;(2)y=x24x+3=(x2)21,抛物线对称轴为x=2,P(2,1),设M(2,t),且C(0,3),MC=,MP=|t+1|,PC=2,CPM为等腰三角形,有MC=MP、MC=PC和MP=PC三种情况,当MC=MP时,则有=|t+1|,解得t=,此时M(2,);当MC=PC时,则有=2,解得t=1(与P点重合,舍去)或t=7,此时M(2,7);当MP=PC时,则有|t+1|=2,解得t=1+2

42、或t=12,此时M(2,1+2)或(2,12);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,1+2)或(2,12);(3)如图,过E作EFx轴,交BC于点F,交x轴于点D,设E(x,x24x+3),则F(x,x+3),0x3,EF=x+3(x24x+3)=x2+3x,SCBE=SEFC+SEFB=EFOD+EFBD=EFOB=3(x2+3x)=(x)2+,当x=时,CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,CBE的面积最大【点评】本题为二次函数的综合应用,涉及待定系数法、勾股定理、等腰三角形的性质、三角形的面积、二次函数的性质、方程思想及分类讨论思想等

43、知识在(1)中注意待定系数法的应用,在(2)中设出M点的坐标,利用等腰三角形的性质得到关于M点坐标的方程是解题的关键,在(3)中用E点坐标表示出CBE的面积是解题的关键本题考查知识点较多,综合性较强,难度适中6(2017福建)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且ab()求抛物线顶点Q的坐标(用含a的代数式表示);()说明直线与抛物线有两个交点;()直线与抛物线的另一个交点记为N()若1a,求线段MN长度的取值范围;()求QMN面积的最小值【分析】()把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点坐标;()由

44、直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,再判断其判别式大于0即可;()(i)由()的方程,可求得N点坐标,利用勾股定理可求得MN2,利用二次函数性质可求得MN长度的取值范围;(ii)设抛物线对称轴交直线与点E,则可求得E点坐标,利用SQMN=SQEN+SQEM可用a表示出QMN的面积,再整理成关于a的一元二次方程,利用判别式可得其面积的取值范围,可求得答案【解答】解:()抛物线y=ax2+ax+b过点M(1,0),a+a+b=0,即b=2a,y=ax2+ax+b=ax2+ax2a=a(x+)2,抛物线顶点Q的坐标为(,);()直线y=2x+m经过点

45、M(1,0),0=21+m,解得m=2,联立直线与抛物线解析式,消去y可得ax2+(a2)x2a+2=0(*)=(a2)24a(2a+2)=9a212a+4,由()知b=2a,且ab,a0,b0,0,方程(*)有两个不相等的实数根,直线与抛物线有两个交点;()联立直线与抛物线解析式,消去y可得ax2+(a2)x2a+2=0,即x2+(1)x2+=0,(x1)x(2)=0,解得x=1或x=2,N点坐标为(2,6),(i)由勾股定理可得MN2=(2)12+(6)2=+45=20()2,1a,21,MN2随的增大而减小,当=2时,MN2有最大值245,则MN有最大值7,当=1时,MN2有最小值125

46、,则MN有最小值5,线段MN长度的取值范围为5MN7;(ii)如图,设抛物线对称轴交直线与点E,抛物线对称轴为x=,E(,3),M(1,0),N(2,6),且a0,设QMN的面积为S,S=SQEN+SQEM=|(2)1|(3)|=,27a2+(8S54)a+24=0(*),关于a的方程(*)有实数根,=(8S54)2427240,即(8S54)2(36)2,a0,S=,8S540,8S5436,即S+,当S=+时,由方程(*)可得a=满足题意,当a=,b=时,QMN面积的最小值为+【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、勾股定理、三角形的面积等知识在(

47、1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得N点的坐标是解题的关键,在最后一小题中用a表示出QMN的面积是解题的关键本题考查知识点较多,综合性较强,难度较大7(2017盐城)如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为点B(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;连接BC、CD,设直线BD交线段AC于点E,CDE的面积为S1,BCE的面积为S2,求的最大值;过点D作DFAC,垂足为点F,连接CD,是否存

48、在点D,使得CDF中的某个角恰好等于BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由【分析】(1)根据题意得到A(4,0),C(0,2)代入y=x2+bx+c,于是得到结论;(2)如图,令y=0,解方程得到x1=4,x2=1,求得B(1,0),过D作DMx轴于M,过B作BNx轴交于AC于N,根据相似三角形的性质即可得到结论;根据勾股定理的逆定理得到ABC是以ACB为直角的直角三角形,取AB的中点P,求得P(,0),得到PA=PC=PB=,过D作x轴的平行线交y轴于R,交AC的延线于G,情况一:如图,DCF=2BAC=DGC+CDG,情况二,FDC=2BAC,解直角三角形即可得到结论【

49、解答】解:(1)根据题意得A(4,0),C(0,2),抛物线y=x2+bx+c经过A、C两点,y=x2x+2;(2)如图,令y=0,x2x+2=0,x1=4,x2=1,B(1,0),过D作DMx轴交AC于点M,过B作BNx轴交于AC于N,DMBN,DMEBNE,=,设D(a,=a2a+2),M(a,a+2),B(1.0),N(1,),=(a+2)2+;当a=2时,的最大值是;A(4,0),B(1,0),C(0,2),AC=2,BC=,AB=5,AC2+BC2=AB2,ABC是以ACB为直角的直角三角形,取AB的中点P,P(,0),PA=PC=PB=,CPO=2BAC,tanCPO=tan(2B

50、AC)=,过D作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,DCF=2BAC=DGC+CDG,CDG=BAC,tanCDG=tanBAC=,即,令D(a,a2a+2),DR=a,RC=a2a,a1=0(舍去),a2=2,xD=2,情况二,FDC=2BAC,tanFDC=,设FC=4k,DF=3k,DC=5k,tanDGC=,FG=6k,CG=2k,DG=3k,RC=k,RG=k,DR=3kk=k,=,a1=0(舍去),a2=,点D的横坐标为2或【点评】本题考查了待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形,直角三角形的性质,正确的作出辅助线是解题的关键8(201

51、7孝感)在平面直角坐标系xOy中,规定:抛物线y=a(xh)2+k的伴随直线为y=a(xh)+k例如:抛物线y=2(x+1)23的伴随直线为y=2(x+1)3,即y=2x1(1)在上面规定下,抛物线y=(x+1)24的顶点坐标为(1,4),伴随直线为y=x3,抛物线y=(x+1)24与其伴随直线的交点坐标为(0,3)和(1,4);(2)如图,顶点在第一象限的抛物线y=m(x1)24m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D若CAB=90,求m的值;如果点P(x,y)是直线BC上方抛物线上的一个动点,PBC的面积记为S,当S取得最大值时,求m的值【分析】(1)由抛物线的

52、顶点式可求得其顶点坐标,由伴随直线的定义可求得伴随直线的解析式,联立伴随直线和抛物线解析式可求得其交点坐标;(2)可先用m表示出A、B、C、D的坐标,利用勾股定理可表示出AC2、AB2和BC2,在RtABC中由勾股定理可得到关于m的方程,可求得m的值;由B、C的坐标可求得直线BC的解析式,过P作x轴的垂线交BC于点Q,则可用x表示出PQ的长,进一步表示出PBC的面积,利用二次函数的性质可得到m的方程,可求得m的值【解答】解:(1)y=(x+1)24,顶点坐标为(1,4),由伴随直线的定义可得其伴随直线为y=(x+1)4,即y=x3,联立抛物线与伴随直线的解析式可得,解得或,其交点坐标为(0,3)和(1,4),故答案为:(1,4);y=x3;(0,3);(1,4);(2)抛物线解析式为y=m(x1)24m,其伴随直线为y=m(x1)4m,即y=mx5m,联立抛物线与伴随直线的解析式可得,解得或,A(1,4m),B(2,3m),在y=m(x1)24m中,令y=0可解得x=1或x=3,C(1,0),D(3,0),AC2=4+16m2,AB2=1+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论