版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 可修改重庆市2020-2021学年高二数学5月联考试题 文(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. C. D. 【答案】B【解析】【分析】利用集合交集的运算规律可得出。【详解】,故选:B。【点睛】本题考查集合交集的运算,正确利用集合的运算律是解题的关键,考查计算能力,属于基础题。2.复数( )A. 1+2iB. 1-2iC. -1+2iD. -1-2i【答案】A【解析】试题分析:考点:复数运算3.已知函数,且,则=( )A. B. 2C. 1D. 0【答案】D【解析】【分析】求出函数的导数,结合条件,可求出实数的值。【详解】因
2、为,所以,解得,故选:D。【点睛】本题考查导数的计算,考查导数的运算法则以及基本初等函数的导数,考查运算求解能力,属于基础题。4.已知函数 ,则( )A. 2B. 3C. 4D. 5【答案】B【解析】【分析】利用分段函数解析式,可得,即可求解.【详解】由题意,函数,则,故选B.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式合理运算是解答的关键,着重考查了运算与求解能力,属于基础题.5.函数的定义域是( )A. B. C. D. 【答案】C【解析】【分析】求的定义域,只要注意分母不为0,偶次方根大于等于0,然后解不等式组即可.【详解】因为,所以,解得或,答案选C.【点睛
3、】本题考查定义域问题,注意对不等式组进行求解即可,属于简单题.6.用反证法证明命题“已知,则,中至多有一个不小于0”时,假设正确的是( )A. 假设,都不大于0B. 假设,至多有一个大于0C. 假设,都小于0D. 假设,都不小于0【答案】D【解析】【分析】利用反证法的定义写出命题结论的否定即可.【详解】根据反证法的概念,假设应是所证命题结论的否定,所以假设应为:“假设,都不小于0”,故选:D【点睛】反证法的适用范围是:(1)否定性命题;(2)结论涉及“至多”、“至少”、“无限”、“唯一”等词语的命题;(3)命题成立非常明显,直接证明所用的理论较少,且不容易证明,而其逆否命题非常容易证明;(4)
4、要讨论的情况很复杂,而反面情况较少7.已知变量,之间具有良好的线性相关关系,若通过10组数据得到的回归方程为,且,则( )A. 2.1B. 2C. -2.1D. -2【答案】C【解析】【分析】根据回归直线过样本点的中心,可以选求出样本点的中心,最后代入回归直线方程,求出.【详解】因为,所以根本点的中心为,把样本点的中心代入回归直线方程,得,故本题选C.【点睛】本题考查了利用样本点的中心在回归直线方程上这个性质求参数问题,考查了数学运算能力.8.已知函数的图像在点处的切线与直线平行,则A. 1B. C. D. -1【答案】D【解析】【分析】求出曲线在点处切线的斜率,求出函数的导函数,根据两直线平
5、行的条件,令, ,求出;【详解】,所以,又直线得斜率为,由两直线平行得:,所以故选:D【点睛】本题考查了利用导数研究曲线上某点切线方程,考查了运算能力,属于中档题9.“”是“直线与直线互相垂直”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】【分析】利用两直线垂直时它们的一般方程的系数间的关系可求的值.【详解】若直线与直线互相垂直,则,解得.所以“”是“直线与直线互相垂直”的充要条件,选C.【点睛】如果直线,(1)若,则;(2)若,则且或;(2)若重合,则,.10.奇函数是上的增函数,且,则不等式的解集为( )A. B. C. D. 【
6、答案】C【解析】【分析】由为奇函数,且不等式可得,等价于,等价于,再根据是在R上的增函数,即可求解.【详解】因为是奇函数,所以,则等价于,因为,所以.因为在R上的增函数,所以,即.答案选C.【点睛】本题考查函数的奇偶性与单调性,难点在于化简不等式,对于不等式可作如下转化进行化简,转化过程如下:,本题属于中等题.11.已知命题若,则;命题若,则.在命题;中,真命题是( )A. B. C. D. 【答案】A【解析】【分析】先判断出命题简单命题、的真假,再利用复合命题的真假性原则来判断各命题中的复合命题的真假。【详解】若,则都有,所以命题真命题;若,则与只是模相等,方向不一定相同或相反,所以命题为假
7、命题.根据复合命题的真假判断原则,为真,为假,为真,为假,则正确,故选:A。【点睛】本题考查复合命题真假性的判断,解题时要先判断各简单命题的真假,再结合复合命题真假性的原则来进行判断,考查逻辑推理能力,属于中等题。12.已知函数处取得极值10,则( )A. 或B. 或C. D. 【答案】D【解析】【分析】根据函数在处取得极值10,得,由此求得的值,再验证是否符合题意即可.【详解】函数在处取得极值10,所以,且,解得或,当时,根据极值的定义知道,此时函数无极值;当时,令得或,符合题意;所以,故选D.【点睛】该题考查的是有关根据函数的极值求解析式中的参数的问题,注意其对应的条件为函数值以及函数在对
8、应点处的导数的值,构造出方程组,求得结果,属于简单题目.二、填空题:把答案填在答题卡中的横线上.13.设,则_.【答案】【解析】【分析】先利用复数的除法法则将复数表示为一般形式,然后利用复数的模长公式可求出.【详解】,则,故答案为:。【点睛】本题考查复数的除法,考查复数的模长公式,在求解复数的问题时,一般要将复数利用四则运算法则将复数表示为一般形式,再结合相关公式进行求解,考查计算能力,属于基础题。14.若函数满足,且,则_.【答案】3【解析】【分析】在等式中,令可得出答案。【详解】因为,令,得,故答案为:。【点睛】本题考查抽象函数求值问题,充分利用等式对自变量进行赋值,考查计算能力,属于基础
9、题。15.命题“若,则或”的逆否命题是_.【答案】若且,则.【解析】【分析】根据逆否命题的改写原则得出原命题的逆否命题。【详解】由题意知,命题“若,则或”的逆否命题是“若且,则”,故答案为:若且,则.【点睛】本题考查原命题的逆否命题的改写,解题时要注意逆否命题与原命题之间的关系,同时要注意“且”的否定形式为“或”,属于基础题。16.一个不透明的袋子中有大小形状完全相同的个乒乓球,乒乓球上分别印有数字,小明和小芳分别从袋子中摸出一个球(不放回),看谁摸出来的球上的数字大.小明先摸出一球说:“我不能肯定我们两人的球上谁的数字大.”然后小芳摸出一球说:“我也不能肯定我们两人的球上谁的数字大.”那么小
10、芳摸出来的球上的数字是_.【答案】【解析】【分析】由于小明先摸出一球说:“我不能肯定我们两人的球上谁的数字大.”,即可确定小明摸出来的可能是,由于小芳也不能确定谁大,从而得到小芳摸出来的球上的数字。【详解】由于两人都不能肯定他们两人的球上谁的数字大,说明小明摸出来的可能是,不可能是,而小芳也就知道了小明摸出来的可能是,小芳也说不能肯定两人的球上谁的数字大,说明小芳摸出来的只能是.【点睛】本题考查逻辑推理,属于基础题。三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知集合,全集为R求;若,求实数m的取值范围【答案】(1);(2)【解析】【分析】(1)进行补集、交集的运算即可;(2)可
11、求出ABx|3x5,根据(AB)C即可得出m5,即得出m的范围【详解】解:(1)RBx|x0,或x5;A(RB)x|3x0;(2)ABx|3x5;(AB)C;m5;实数m的取值范围为5,+)【点睛】本题考查描述法的定义,以及交集、并集和补集的运算,子集的定义18.已知,复数.(1)若为纯虚数,求的值;(2)在复平面内,若对应的点位于第二象限,求的取值范围.【答案】(1)(2)【解析】【分析】(1)先利用复数的除法得到,根据为纯虚数可得.(2)先求出,根据其对应的点在第二象限可得横坐标、纵坐标满足的不等式,从而得到的取值范围.【详解】解:(1)因为为纯虚数,所以,且,则(2)由(1)知, 则点位
12、于第二象限,所以,得. 所以的取值范围是.【点睛】本题考查复数的除法、复数的概念及复数的几何意义,属于基础题.19.已知,函数.(1)求的定义域;(2)若在上的最小值为,求的值.【答案】(1) ; (2) .【解析】【分析】(1)由题意,函数的解析式有意义,列出不等式组,即可求解函数的定义域;(2)由题意,化简得,设,根据复合函数的性质,分类讨论得到函数的单调性,得出函数最值的表达式,即可求解。【详解】(1)由题意,函数,满足 ,解得,即函数的定义域为。(2)由,设,则表示开口向下,对称轴的方程为,所以在上为单调递增函数,在单调递减,根据复合函数的单调性,可得因为,函数在为单调递增函数,在单调
13、递减,所以,解得;故实数的值为【点睛】本题主要考查了对数函数的图象与性质的应用,以及与对数函数复合函数的最值问题,其中解答中熟记对数函数的图象与性质,合理分类讨论求解是解答本题的关键,着重考查了推理与运算能力,属于中档试题。20.某高中尝试进行课堂改革.现高一有两个成绩相当的班级,其中A班级参与改革,B班级没有参与改革.经过一段时间,对学生学习效果进行检测,规定进步超过10分的为进步明显,得到如下列联表.进步明显进步不明显合计A班级153045B班级104555合计2575100(1)是否有95%的把握认为成绩进步是否明显与课堂是否改革有关?(2)按照分层抽样的方式从 班中进步明显的学生中抽取
14、5人做进一步调查,然后从5人中抽2人进行座谈,求这2人来自不同班级的概率.附:(其中).0.150.100.050.0250.0100.0052.0722.7063.8415.0246.6357.879【答案】(1)没有95%的把握认为成绩进步是否明显与课堂是否改革有关.(2)【解析】【分析】(1)计算出的观测值,并根据临界值表找出犯错误的概率,即可对题中的结论进行判断;(2)先计算出班有人,分别记为、,班有人,分别记为、,列举出所有的基本事件,确定基本事件的总数,并确定事件“其中人来自于不同班级”所包含的基本事件数,再利用古典概型的概率公式可计算出所求事件的概率。【详解】(1)的观测值,所以
15、没有95%的把握认为成绩进步是否明显与课堂是否改革有关;(2)按照分层抽样,班有3人,记为,班有2人,记为,则从这5人中抽2人的方法有,共10种. 其中2人来自于不同班级的情况有6种,所以所求概率是【点睛】本题第(1)问考查独立性检验,要理解临界值表的含义,第(2)问考查古典概型概率的计算,关键要列举出基本事件,考查运算求解能力,属于中等题。21.已知函数(1)讨论的单调性.(2)当时,在上是否恒成立?请说明理由.【答案】(1)见解析;(2)当时,恒成立.【解析】【分析】(1)求出函数的定义域与导数,对分和两种情况进行分类讨论,结合导数的符号得出函数的单调区间;(2)构造函数,利用导数分析出函
16、数在上单调递增,由此得出从而得出题中结论成立。【详解】(1)因为,定义域为,所以,当时,则在上单调递增. 当时,所以当时,;当时,. 综上所述:当时,的单调递增区间为,无单调递减区间;当时,的单调递增区间为,单调递减区间为 (2)当时,在上恒成立,证明如下:设,则 当时,在上是增函数.从而,即,所以故当时,恒成立.【点睛】本题考查利用导数求函数的单调区间,以及利用导数证明不等式,在证明不等式时,要利用导数分析函数的单调性、极值以及最值,结合极值与最值的符号进行证明,考查分类讨论思想与转化与化归思想,属于中等题。22.选修4-4:坐标系与参数方程 在直角坐标系中,点,直线的参数方程为(为参数),
17、曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线与曲线相交于,两点.(1)求曲线与直线交点的极坐标(,);(2)若,求的值.【答案】(1),.(2)【解析】【分析】(1)直接利用转换关系,把直线与曲线的参数方程化为直角坐标方程,再联立直线与圆的普通方程,求得交点坐标,化为极坐标即可(2)先求得曲线的普通方程,再将直线的参数方程与抛物线的普通方程联立,利用直线参数的几何意义结合一元二次方程根和系数关系的应用求出结果【详解】(1)直线的普通方程为,曲线的普通方程为.联立,解得或,所以交点极坐标为,.(2)曲线的直角坐标方程为,将,代入得.设,两点对应的参数分别为,则有,所以,解得【点睛】本题考查的知识要点:参数方程、直角坐标方程和极坐标方程之间的转换,考查了直线的参数方程的应用,考查了一元二次方程根和系数关系的应用及运算能力和转化能力,属于基础题型23
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024正规个人房屋租赁合同格式(简单版)
- 街区店铺租赁协议
- 合作事宜协议书模板
- 个人买房协议书
- 2024股份合作协议书合同范本
- 2024竞争性招标合同范文
- 城市更新项目拆除合同
- 工程工具租赁合同
- 2024补偿贸易借款合同标准范本范文
- 专业婚车租赁协议
- 个人开车与单位免责协议书
- 《护理文书书写》课件
- 广东省广州市海珠区2024-2025学年三年级上学期月考英语试卷
- 2023年北京市重点校初三(上)期末历史试题汇编:第一次工业革命
- 《最后一片叶子》课件
- 2024年小轿车买卖合同标准版本(三篇)
- 八年级生物中考备考计划
- 2024-2030年全球及中国湿巾和卫生纸行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 公务员2019年国考《申论》真题及答案(省级)
- 2024年会计专业考试初级会计实务试卷与参考答案
- 职业技术学院材料工程技术专业调研报告
评论
0/150
提交评论