版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基于matlab的霍夫变换一、简单介绍Hough变换是图像处理中从图像中识别几何形状的基本方法之一。Hough变换的基本原理在于利用点与线的对偶性,将原始图像空间的给定的曲线通过曲线表达形式变为参数空间的一个点。这样就把原始图像中给定曲线的检测问题转化为寻找参数空间中的峰值问题。也即把检测整体特性转化为检测局部特性。比如直线、椭圆、圆、弧线等。二、基本原理Hough变换的基本原理在于,利用点与线的对偶性,将图像空间的线条变为参数空间的聚集点,从而检测给定图像是否存在给定性质的曲线(圆的方程为:(x-a)2+(y-b)2=r2,通过Hough变换,将图像空间对应到参数空间)。霍夫变换是图像处理中
2、从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。最基本的霍夫变换是从黑白图像中检测直线(线段)。三、hough变换检测直线设已知一黑白图像上画了一条直线,要求出这条直线所在的位置。我们知道,直线的方程可以用y=k*x+b 来表示,其中k和b是参数,分别是斜率和截距。过某一点(x0,y0)的所有直线的参数都会满足方程y0=kx0+b。即点(x0,y0)确定了一族直线。方程y0=kx0+b在参数k-b平面上是一条直线,(你也可以是方程b=-x0*k+y0对应的直线)。如下图1所示:从图1中可看出,x-y坐标和k-b坐标有点-线的对偶性。x-y坐标中的点P1、P2对应于k-b坐标中
3、的L1、L2;而k-b坐标中的点P0对应于x-y坐标中的线L0 。这样,图像x-y平面上的一个前景像素点就对应到参数平面上的一条直线。我们举个例子说明解决前面那个问题的原理。设图像上的直线是y=x, 我们先取上面的三个点:A(0,0), B(1,1), C(22)。可以求出,过A点的直线的参数要满足方程b=0, 过B点的直线的参数要满足方程1=k+b, 过C点的直线的参数要满足方程2=2k+b, 这三个方程就对应着参数平面上的三条直线,而这三条直线会相交于一点(k=1,b=0)。同理,原图像上直线y=x上的其它点(如(3,3),(4,4)等)对应参数平面上的直线也会通过点(k=1,b=0)。这
4、个性质就为我们解决问题提供了方法,就是把图像平面上的点对应到参数平面上的线,最后通过统计特性来解决问题。假如图像平面上有两条直线,那么最终在参数平面上就会看到两个峰值点,依此类推。简而言之,Hough变换思想为:在原始图像坐标系下的一个点对应了参数坐标系中的一条直线,同样参数坐标系的一条直线对应了原始坐标系下的一个点,然后,原始坐标系下呈现直线的所有点,它们的斜率和截距是相同的,所以它们在参数坐标系下对应于同一个点。这样在将原始坐标系下的各个点投影到参数坐标系下之后,看参数坐标系下有没有聚集点,这样的聚集点就对应了原始坐标系下的直线。这个性质就为我们解决问题提供了方法: 首先,我们初始化一块缓
5、冲区,对应于参数平面,将其所有数据置为0。 然后,对于图像上每一前景点,求出参数平面对应的直线,把这直线上的所有点的值都加。最后,找到参数平面上最大点的位置,这个位置就是原图像上直线的参数。 上面就是霍夫变换的基本思想。就是把图像平面上的点对应到参数平面上的线,最后通过统计特性来解决问题。假如图像平面上有两条直线,那么最终在参数平面上就会看到两个峰值点,依此类推。在实际应用中,y=k*x+b形式的直线方程没有办法表示x=c形式的直线(这时候,直线的斜率为无穷大)。所以实际应用中,是采用参数方程p=x*cos(theta)+y*sin(theta)。这样,图像平面上的一个点就对应到参数p-the
6、ta平面上的一条曲线上。其它的还是一样。在极坐标a-p中变为一条正弦曲线,a取(0-180)。可以证明,直角坐标X-Y中直线上的点经过Hough变换后,它们的正弦曲线在极坐标a-p有一个公共交点,如图2所示:也就是说,极坐标a-p上的一点(a,p),对应于直角坐标X-Y中的一条直线,而且它们是一一对应的。为了检测出直角坐标X-Y中由点所构成的直线,可以将极坐标a-p量化成许多小格。根据直角坐标中每个点的坐标(x,y),在a = 0-180内以小格的步长计算各个p值,所得值落在某个小格内,便使该小格的累加记数器加1。当直角坐标中全部的点都变换后,对小格进行检验,计数值最大的小格,其(a,p)值对
7、应于直角坐标中所求直线。四、hough变换检测圆再看下面一个问题:我们要从一副图像中检测出半径以知的圆形来。这个问题比前一个还要直观。我们可以取和图像平面一样的参数平面,以图像上每一个前景点为圆心,以已知的半径在参数平面上画圆,并把结果进行累加。最后找出参数平面上的峰值点,这个位置就对应了图像上的圆心。在这个问题里,图像平面上的每一点对应到参数平面上的一个圆。 把上面的问题改一下,假如我们不知道半径的值,而要找出图像上的圆来。这样,一个办法是把参数平面扩大称为三维空间。就是说,参数空间变为x-y-R三维,对应圆的圆心和半径。图像平面上的每一点就对应于参数空间中每个半径下的一个圆,这实际上是一个
8、圆锥。最后当然还是找参数空间中的峰值点。不过,这个方法显然需要大量的内存,运行速度也会是很大问题。 有什么更好的方法么? 我们前面假定的图像都是黑白图像(二值图像),实际上这些二值图像多是彩色或灰度图像通过边缘提取来的。我们前面提到过,图像边缘除了位置信息,还有方向信息也很重要,这里就用上了。根据圆的性质,圆的半径一定在垂直于圆的切线的直线上,也就是说,在圆上任意一点的法线上。这样,解决上面的问题,我们仍采用2维的参数空间,对于图像上的每一前景点,加上它的方向信息,都可以确定出一条直线,圆的圆心就在这条直线上。这样一来,问题就会简单了许多。接下来还有许多类似的问题,如检测出椭圆,正方形,长方形
9、,圆弧等等。这些方法大都类似,关键就是需要熟悉这些几何形状的数学性质。霍夫变换的应用是很广泛的,比如我们要做一个支票识别的任务,假设支票上肯定有一个红颜色的方形印章,我们可以通过霍夫变换来对这个印章进行快速定位,在配合其它手段进行其它处理。霍夫变换由于不受图像旋转的影响,所以很容易的可以用来进行定位。霍夫变换有许多改进方法,一个比较重要的概念是广义霍夫变换,它是针对所有曲线的,用处也很大。就是针对直线的霍夫变换也有很多改进算法,比如前面的方法我们没有考虑图像上的这一直线上的点是否连续的问题,这些都要随着应用的不同而有优化的方法。五、程序实现(圆)上文中提到了检测圆的切线的方法,这里暂且不讨论,
10、这里讨论经典HOUGH算法。下面为我写的利用极坐标表示圆的一种算法流程:1.图像灰度化,二值化(注意:二值化的好坏对检测结果有很大影响,常用的有SOBEL算子) 2.检测图像中的边缘点,并保存其坐标位置。设置角度theta的变化范围和步长,半径r的变换范围和步长。 3.利用公式x=a+rcos(theta),y=b+rsin(theta)求出a和b的值。(注意:x和y为实际的图像空间某个边缘点的坐标,a和b为其对应的参数空间的坐标),如果a和b的值在合理的范围之类,则对该位置进行累加。 例如:cppview plaincopy1. fori=1:ecount2. forr=1:size_r3.
11、 fork=1:size_angle4. a=round(rows(i)-(r_min+(r-1)*step_r)*cos(k*step_angle);5. b=round(cols(i)-(r_min+(r-1)*step_r)*sin(k*step_angle);6. if(a0&a0&b0&a0&b=max_para*p);56. length=size(index);57. hough_circle=zeros(m,n);58. fori=1:ecount59. fork=1:length60. par3=floor(index(k)/(m*n)+1;61. par2=floor(in
12、dex(k)-(par3-1)*(m*n)/m)+1;62. par1=index(k)-(par3-1)*(m*n)-(par2-1)*m;63. if(rows(i)-par1)2+(cols(i)-par2)2(r_min+(par3-1)*step_r)2-5)65. hough_circle(rows(i),cols(i)=1;66. end67. end68. end69. 70. %打印结果71. fork=1:length72. par3=floor(index(k)/(m*n)+1;73. par2=floor(index(k)-(par3-1)*(m*n)/m)+1;74.
13、 par1=index(k)-(par3-1)*(m*n)-(par2-1)*m;75. par3=r_min+(par3-1)*step_r;76. fprintf(1,Center%d%dradius%dn,par1,par2,par3);77. para(:,k)=par1,par2,par3;78. end79.六、总结图像空间中的在同一个圆,直线,椭圆上的点,每一个点都对应了参数空间中的一个图形,在图像空间中这些点都满足它们的方程这一个条件,所以这些点,每个投影后得到的图像都会经过这个参数空间中的点。也就是在参数空间中它们会相交于一点。所以,当参数空间中的这个相交点的越大的话,那么说
14、明元图像空间中满足这个参数的图形越饱满。越象我们要检测的东西。Hough变换能够查找任意的曲线,只要你给定它的方程。Hough变换在检验已知形状的目标方面具有受曲线间断影响小和不受图形旋转的影响的优点,即使目标有稍许缺损或污染也能被正确识别。【Circle2.bmp】【完整代码如下】%- 2015/1/4 9:56 -%f=imread(circle2.bmp);imshow(f);f=rgb2gray(f);imshow(f);m,n=size(f);r_max=200;r_min=1;step_r=1;size_r=round(r_max-r_min)/step_r)+1;step_ang
15、le=1;size_angle=round(2*pi/step_angle);hough_space=zeros(m,n,size_r);rows,cols=find(f);ecount=size(rows);for i=1:ecountfor r=1:size_rfor k=1:size_anglea=round(rows(i)-(r_min+(r-1)*step_r)*cos(k*step_angle);b=round(cols(i)-(r_min+(r-1)*step_r)*sin(k*step_angle);if(a0&a0&b=(max_para*p);length=size(index);hough_circle=zeros(m,n);for i=1:ecountfor k=1:lengthpar3=floor(index(k)/(m*n)+1;par2=floor(index(k)-(par3-1)*(m*n)/m)+1;par1=index(k)-(par3-1)*(m*n)-(par2-1)*m;if(rows(i)-par1)2+(cols(i)-par2)2)(r_min+(par3-1)*step_r)2-5)hough_circle(rows(i),cols(i)=1;endendendfor
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版:供应链管理服务合同
- 2024年特种门采购合同范本3篇
- 2024年某企业关于知识产权许可的合同
- 马鞍山职业技术学院《安装工程计量计价实训》2023-2024学年第一学期期末试卷
- 2024年文化产业融资借款合同范本大全6篇
- 2025年货运从业资格证模拟试题题库及答案解析
- 2025年货运从业资格证考试题目和答案
- 2025年昆明考货运从业资格证考试题目
- 2024事业单位聘用合同教师(附教育质量监控与管理)3篇
- 2025建筑工程民工劳动合同范文
- 成都锦城学院《操作系统与nux管理》2022-2023学年期末试卷
- 《弧弦圆心角》说课稿课件
- 中职班级建设三年规划方案
- 河南省郑州市2023-2024学年高二上学期期末考试 物理 含解析
- 2024年中级安全工程师《(建筑施工)安全生产专业实务》考试题库(含答案)
- 弘扬抗战精神课程设计
- 康复护理完整版
- 制氢技术与工艺 课件 第7章 氨制氢
- 12S4消防工程标准图集
- 天津市2023-2024学年七年级上学期期末考试数学试题(含答案)
- 《计算机网络技术》课程教案(完整版)
评论
0/150
提交评论