北大计算机系考研历年高等数学真题附答案_第1页
北大计算机系考研历年高等数学真题附答案_第2页
北大计算机系考研历年高等数学真题附答案_第3页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、北大计算机系考研历年高等数学真题附答案北大计算机考研 高等数学真题解答200年(5题分)1(分)有连续的二阶导数,求。(12分)在上连续且,,证明:在上必有一点使得。3(2分)求不定积分。 (12分)且,有连续的导数,求。5 (12分)在附近可导且导数大于0,证明无穷级数发散,无穷级数收敛。007年(5题60分) (12分)求不定积分。解:。2(12分)求连续函数,使它满足。解:令则时,,时,;。(12分)设。证明:和都存在并相等。解:;单调递减;单调递增;由以上两结论可知:有下界,于是存在;有上界,于是存在。令,由有:解得,所以。 (12分)求和。解:(1) 若,;(2) 若,。 (12分)

2、求极限。2年(5题6分)1 (分)计算积分。解:。2 (12分)求。解:时,;时,;时,;所以:。3 (2分)设,证明不等式。证:时,令,有;则,有;,所以上单调递增,又,所以,可知上单调递增,又,所以,即。4 (2分)求幂级数的收敛域与和函数。解:求收敛半径:,当时级数收敛,当时级数发散,所以收敛半径。当时,显然发散,所以收敛域。求和函数:;;所以:;。5(1分)设连续,在处可导,且。求。解:令;00年(7题7分) (8分)求。解:2 (10分)设,求。解:等式两边对求导得:,化简得(是确定的隐函数);再次对求导得,将代入得:(是确定的隐函数)。3 (8分)求下列不定积分:(1);(2) 。

3、解:() 。(2) 4 (分)求,其中n为自然数。解:令,则,;。5 (8分)若,试证:。证:时,。时,由拉格朗日中值定理易知:,使得:;显然是单调递增函数,故,即,所以有。6 (10分)求。解:令。则7 (10分)设曲线上的非负连续函数,表示由所围成的图形绕直线旋转而成的旋转体的体积。试证明:。证:取轴为积分坐标,的变化范围为。轴上对应的一小段旋转柱体可近似展开成矩形薄板,宽为点绕直线旋转得到的圆周长,高为,厚为,故。所以。于是,。20年(6题50分)1 (6分)求。解:。2 (8分)设,求。解:时:;时:;时:。3 (分)求,其中是非负整数,先建立递推公式,然后求定积分的值。解:(分)求的

4、和。解:()5 (0分)设。(1)证明数列收敛。证:,,即数列单调递减有下界,所以收敛。在其中添加一项得数列,收敛性不变,仍然收敛。(2)求极限。解:由(1)知数列收敛,即极限存在,令,由有,即,由()知,解得。所以。6 (0分)有半径为的半球形固定杯子,杯内放一根长为的均匀细棒(见图),假设棒与杯子之间没有摩擦力,求棒的平衡位置(重心最低的位置)。解:设细棒与水平面夹角为;细棒重力为,细棒与杯沿接触点的作用力为,与杯内壁接触点的作用力为;由作用力平衡得:和,解得;由作用于细棒与杯内壁接触点处的力矩平衡得:将代入上式并化简得:;解得:。更佳解:设细棒与水平面夹角为,细棒重心到水平面距离为,则:

5、,原问题即为取何值时最小;,令,解得:。203年(3题22分)1 (6分)设,求。解:等式两边对求导得:,化简得,再次对求导得:。2(8分)设,求。解:当时,;当时,。 (8分)求。解:令,则,。2002年(3题20分) (6分)计算。解:2 (7分)设在上连续且大于0。试证明:存在,直线将在区间上的以为曲线边的曲边梯形分成两部分,使得左右两部分的面积之比为且这样的是唯一的。解:由题意,任意一条位于之间的垂直线将曲边梯形分成的左右两部分的面积分别为:;令,则,由零值定理知在区间至少有一个零值;又,知区间单调递增,至多有一个零值;所以存在唯一的,使得即,也即存在唯一的使得左右两部分面积之比为。3

6、 (7分)求级数的和及收敛半径。解:求收敛半径:,当时级数收敛,当时级数发散,所以收敛半径;求和函数:令,则。2001年(3题22分)(7分)设上连续,且,记,求。解:由及已知条件有:上式两边对求导得:;所以有:。2 (分)求级数的和及收敛区间。解:求收敛区间:,所以收敛半径;当时,级数成为,,级数是发散的;当时,级数成为,不存在,级数是发散的;所以收敛区间;求和函数:,则。3(8分)设函数在上有二阶导数,且,,证明:(1)在内;(2) 存在,使。证:() 反证法证明之。假设存在使得,又,则:使得使得,这与已知条件矛盾。所以不存在使得即在内。(2) 令,则由有:使得,又由题设及(1)知,所以。200年(题22分)1 (分)设,求。解:两边求导得:由得代入上式得2 (分)在曲线上求一点,使得曲线与过点的水平直线、轴及围成的区域面积最小。解:设点坐标为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论