下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.三角形内角和定理的证明教学设计长江中学:丁鹏程课题:三角形内角和定理的证明学习目标:1、知识与技能目标:学生由对三角内角和定理感性认识上升到理性推理证明,掌握三角形内角和定理的证明及简单应用。2、过程与方法目标:学生亲历探索撕纸过程对比,体会思维实验和符号化的理性运用,在观察、操作、推理、归纳等探索过程中,发展合情推理能力,逐步养成逻辑推理能力,并形成一定的逻辑思维能力。3、情感态度与价值观目标:经历三角形内角和定理不同种方法的推理证明过程,培养学生创造性,弘扬个性发展,体验解决问题的成就感,体会数学证明的严谨性和推理意义,培养学习数学的兴趣,感悟逻辑推理的数学价值。教材分析1、内容分析三角
2、形内角和定理是“空间与图形”中的一个很重要的定理。(1)它为以后学习多边形内角和定理奠定基础。(2)实际生活、生产中有广泛的应用。(3)是求角度的有力工具(有时非它不可)。三角形内角和定理的证明过程为学生建立数学思想方法和逻辑推理能力提供一个发展提高平台,其论证过程总体体现为化归思想。学过之后,这种思想方法可以类比运用到其它问题的探索与解决过程之中,其说理过程将成为“普通语言向符号语言转化”的可能,这一可能将随时间的推移与知识的积攒成为现实。在证明过程中,学生从中学到的不仅仅是知识、方法及数学逻辑,他们克服困难的勇气及对问题的好奇心和互相评价,学习方式的选择等等方面都将大有收获,说明了本节教材
3、内容对学生非智力因素的影响还是非常大的。 2、学情分析:(1)学生已经接触过三角形内角和定理,并且进行了猜想与验证及口头说理过程。这为证明三角形内角和定理提供了认知基础。 (2)从学生的学习动机与需要上看,他们有探究新事物的欲望和好奇心,这为探究三角形内角和定理的证明策略及方法提供了情感保障。(3)学生在学习三角形内角和定理的证明过程中,其认知顺序可能是建构型的。平行线是其原有知识储备的主要图式,他们利用原有图式完全可以同化三角形内角和定理。3、障碍预测: 辅助线的作法是学生在几何证明过程中第一次接触,并且辅助线的添法没有统一的规律,要根据需要而定,另外本节课开始将训练学生把几何命题翻译为几何
4、符号语言,这对学生来说都有一定接受难度。教学重点、难点重点:以三角形内角和定理的证明为载体,学习几何证明思想,以及辅助线的有关知识,体会数形结合思想。难点:辅助线添加的必要性和具体方法:(1)为什么要添加;(2)在哪里添加;(3)如何添加;(4)哪种添加方法最简单。设计思路分析:三角形内角和定理是学生接触较早的定理之一,其内容和应用早已为学生所熟悉。因此,本节课需要重点解决的问题是定理的证明;在定理证明中,学生将首次接触和应用辅助线,于是,在证明中“为什么要添加辅助线”、“如何添加辅助线”就必然成为本节课的重点。本课基本定位在于,通过三角形内角和定理证明的教学实践、感受几何证明的思想,体会辅助
5、线在几何问题解决中的桥梁作用。同时,引领学生体会数学中的重要思想数形结合。借助“撕三角形纸片,拼接,验证三角形内角和定理”的过程分析,启发诱导学生初步体会辅助线及其在证明中的作用。最后,引领学生进一步体会辅助线添加方法的多样性,渗透“最优化”思想。教学策略:1、学教方式:为真正落实学生的主体地位,教师只是教学过程的组织者、合作者、引导者,特确定了如下学教方式:学生自主探究、合作交流学习,教师引导发现教学。2、教学支持:为促进学生自主学习,增大课堂容量,提高效率,突出重点,突破难点,本节课将采用多媒体演示教学。 教学过程(一)知识回顾,积累经验1、平行线的判定:2、平行线的性质: 3、证明一个文
6、字命题的一般步骤: (二)情景再现,导入新课问题1:我们知道三角形三个内角的和等于180.你还记得这个结论的探索过程吗?(1)数的研究:对于三角形的内角和是180这样一个结论,启发学生回想,我们在小学时是怎样知道这个结论的。(通过量角器进行角度的测量,这就是“数”的研究,量角器在这里起到桥的作用。) 问题2:通过前两节课的学习,我们知道通过观察、度量、猜测得到的结论不一定是正确的,测量会产生误差,问题解决得并不完美。这就促使我们去寻找新的研究方向形。(体会证明的必要性) (2)形的研究:对于三角形的内角和是180这样一个结论,启发学生回想,七年级下册时是怎样知道这个结论的。(通过动手操作拼图,
7、将分散的三个角“搬”到一起,从而构成一个平角或两角互补,为本节课引出辅助线做好铺垫)命题三角形三个内角的和等于180数度量三个内角的度数并求和等于180测量形三个角拼在一起(1)平角;(2)两角互补证明【设计意图】(1)鉴于学生对证明已有一定的认识和了解,并且对三角形内角和已经有初步认识,在教学过程设计上并没有从学生身边熟悉的事例创设情境,而是简单地对三角形内角和的知识加以回忆。(2)学生以前所做的都是特殊的三角形,而且“量一量、拼一拼、折一折”受客观因素的制约,影响了研究结果的准确性,况且当时有些学生量出内角和的度数确实要高于或低于180。 (3)学生的怀疑是正常的,剪拼得到的结论有一定的合
8、理性,但还需证明来确认,这正是我们这节课要解决的问题 教育学生研究问题要有一个严谨的科学态度。(三)活用化归,证明定理根据前面给出的公理和定理,你能用自己的语言说说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴交流.结论: 三角形三个内角的和等于180。师: 这是一个文字命题,证明时需要先干什么呢?生:需要先画图形,根据命题的条件和结论写出已知、求证。师:对,下面大家来证明,哪位同学上黑板给大家板演呢? 已知: A、B、C 是ABC的三内角. 求证:A+B+C=180分析:延长BC到D,过点C作射线CEAB,这样,就相当于把A移到了ACE的位置,把B移到了ECD的位置.
9、证明:延长BC到D,过点C作直线CEABBECD(两直线平行,同位角相等) ACE=A(两直线平行,内错角相等) ACE+ECD+ACB180ABACB180(等量代换)师:同学们写得证明过程很好,在证明过程中,我们添画了射线CE、CD,使处于原三角中不同位置的三个角,巧妙地拼凑到一起来了。为了证明的需要,在原来的图形上添画的线叫做辅助线。在平面几何里,辅助线通常画成虚线。我们通过推理的过程,得证了命题:三角形的三个内角的和等于180是真命题,这时称它为定理。即:三角形内角和定理:三角形三个内角的和等于180。【设计意图】培养学生有“公理化思想”,能运用基本事实和定理证明问题,有学会运用旧知解
10、决新知,从以前的活动中思考获取解决的方法,有合作学习的能力,有探究新知的能力。(四)开启智慧,分组探究师:你还有其他方法来证明三角形内角和定理吗?在证明三角形内角和定理时,小明的想法是把三个角“凑”到A处,他过点A作直线PQBC(如图),他的想法可以吗? 请你帮小明把想法化为实际行动 证明:过点A作PQBC PAB=B(两直线平行,内错角相等) , QAC=C(两直线平行,内错角相等),BAC+B+C=180 (平角的定义),BAC+B+C=180 (等量代换).小明的想法已经变为现实,由此你受到什么启发?你有新的证法吗?1、教师组织学生分组讨论:有了上面的知识作为铺垫,我们可以开展探究活动了
11、,看哪组最先找到解决办法,找到的方法最多。2、在学生开展探究的过程中,教师参与其中,对个别感到困难的小组可以进行适当的提示和引导。3、教师指导学生添加辅助线,给出完整的“三角形内角和定理”的证明。4、分组探究,成果展示教师指导学生进行全班交流:(1)借助实物投影仪,将学生找到的添加辅助线的方法进行汇总展示。(2)在展示过程中,注意关注学生的表达以及寻找到的添加辅助线的方法,若有不全的,教师进行必要的提示。(3)引导学生将辅助线添加在三角形的顶部,边上及三角形内、外部均可。然后,进一步引导学生比较哪种最好。【设计意图】1、让学生在证明的过程中,进一步了解三角形内角和定理的证明思路,并且了解一题的
12、多种证法,从而拓宽学生的思路2、这里是本节课的一个重点,教师在这里要交代什么是辅助线,添加时要用虚线画出;辅助线怎么来的在证明开始时要交代清楚,后添加的字母要在证明的开始前交代清楚;规范书写格式是自上而下的;有条理的表达上面的分析思路,有一个严密的逻辑思维过程。3、三角形内角和的证明实质是利用化归思想将三角形内角和转化为“平角等于180”或“两直线平行同旁内角和等于180这一点应向学生交代清楚4、给学生充分的自我展示的机会,尽量发现更多的添加辅助线的方法。(五)实践应用,培养能力1、已知:如图在ABC中,DEBC,A=60, C=70. 求证: ADE=502.、已知:如图,ABC中, B 和
13、C的平分线BE,CF交点O.求证: BOC=90+A (六)知识回顾,拓展延伸, 如图,利用几何画板,在ABC中,(1)如果BC不动,把点A“压”向BC,A就越来越大,而B与C的和越来越小,由此你能想到什么?(2)如果BC不动,把点A“拉离”BC,A就越来越小,而B与C则越来越大,它们的和越来越接近180,由此你能想到什么?【设计意图】引导学生利用运动变化的观点理解和认识数学,渗透极限思想。(七)畅谈收获,反思升华本节课,我们证明了一个很有用的三角形内角和定理。在三角形中,求角的大小可将被求角看作三角形的内角来求。证明的基本思想是:借助辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一
14、个平角或两个互补的角通过本节课的学习,你有哪些收获? (八)课外作业,巩固练习课外作业:课本P241习题6.6 1、2、3 (九)板书设计:三角形内角和定理的证明三角形的内角和定理:三角形的三个内角的和等于180。 教学反思 课标强调:数学教学是数学活动的教学,是师生交往、互动、共同发展的过程。学生是数学学习的主人,教师是学生数学学习的组织者、引导者和合作者。有效的数学教学应当从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动的机会,在活动中激发学生的学习潜能,促使他们在自主探索与合作交流的过程中真正理解和掌握基本的数学知识、技能、思想方法,获得广泛的数学活动经验,提高解决问题
15、的能力,学会学习,同时使学生在意志力、自信心、理性精神等情感与态度方面得到良好的发展。作为“几何证明”的重要组成部分,这节课所涉及的内容对于证明的学习显得十分重要。其原因一方面在于,这是添加辅助线、进行几何证明的首次学习,学生对此普遍感到困难;另一方面,这是义务教育数学课程标准下的“几何公理体系”第一次循环的综合运用,即“两直线平行,内错角相等”、“内错角相等,两直线平行”的综合应用。这篇案例经过了精心设计,尤其是从“数”与“形”两个角度对辅助线作法的分析与探索,做了相当大的内容准备。1、在备课时,教师不能只备教材而不备学生,只考虑自己如何“教”而忽视学生如何“学”。在这节课上产生的情况,由于
16、我对学生已有知识经验估计不足,造成有些内容没完成。因此,教师在备课时,要充分预计学生已有的知识水平,站在学生的角度来思考:如果自己是学生,我已懂了哪些知识?还有什么问题?不能只考虑自己教得舒畅、教得精彩,而应更多地从学生的角度来思考“教什么”和“怎样教”,做到以“学”定“教”。充分体现学生是学习的主体。 2、教师的教学方式要适应学生的学习。新课程明确倡导动手实践、自主探究、合作交流的学习方式。这就要求教师的角色,应当从过去知识的传授者转变为学生自主性、探究性、合作性学习活动的设计者和组织者。在教学过程中,我给学生设置了富有挑战性的问题情境,让学生分组合作、自主地去探究和发现方法。 3、本节课教师主导作用的发挥是比较好的,作用体现在让学生的主体得到充分的展示。 4、要想使学生感受到学习的快乐,就必须让学生体验到靠自己力量获得的成功,体会到探究与发现带来的乐趣。在教学中,我遵循的基本教学原则是激励学生展开积极的思维活动。不断的表扬学生,使学生感到自身的价值存在。 给学生一个展示个性、享受成功的机会。创设民主和谐的氛围,有助于减轻学生的心
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论