下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.3 函数的基本性质(练习) 学习目标 1. 掌握函数的基本性质(单调性、最大值或最小值、奇偶性);2. 能应用函数的基本性质解决一些问题;3. 学会运用函数图象理解和研究函数的性质. 学习过程 一、课前准备(复习教材P27 P36,找出疑惑之处)复习1:如何从图象特征上得到奇函数、偶函数、增函数、减函数、最大值、最小值?复习2:如何从解析式得到奇函数、偶函数、增函数、减函数、最大值、最小值的定义?二、新课导学 典型例题例1 作出函数yx2|x|3的图象,指出单调区间及单调性.小结:利用偶函数性质,先作y轴右边,再对称作.变式:y|x2x3| 的图象如何作?反思:如何由的图象,得到、的图象?
2、例2已知是奇函数,在是增函数,判断在上的单调性,并进行证明.反思: 奇函数或偶函数的单调区间及单调性有何关系?(偶函数在关于原点对称的区间上单调性 ;奇函数在关于原点对称的区间上单调性 )例3某产品单价是120元,可销售80万件. 市场调查后发现规律为降价x元后可多销售2x万件,写出销售金额y(万元)与x的函数关系式,并求当降价多少元时,销售金额最大?最大是多少?小结:利用函数的单调性(主要是二次函数)解决有关最大值和最大值问题 动手试试练1. 判断函数y=单调性,并证明.练2. 判别下列函数的奇偶性:(1)y;(2)y.练3. 求函数的值域.三、总结提升 学习小结1. 函数单调性的判别方法:
3、图象法、定义法.2. 函数奇偶性的判别方法:图象法、定义法.3. 函数最大(小)值的求法:图象法、配方法、单调法. 知识拓展形如与的含绝对值的函数,可以化分段函数分段作图,还可由对称变换得到图象. 的图象可由偶函数的对称性,先作y轴右侧的图象,并把y轴右侧的图象对折到左侧. 的图象,先作的图象,再将x轴下方的图象沿x轴对折到x轴上方. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 函数是单调函数时,的取值范围( ).A B C D 2. 下列函数中,在区间上为增函数的是( ).A B C D3. 已知函数y=为奇函数,则( ). A. B. C. D. 4. 函数yx的值域为 .5. 在上的最大值为 ,最小值为 . 课后作业 1. 已知是定义在上的减函数,且.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产品质量持续改进培训课件
- 电子产品回收处理标准
- 单病种临床路径管理制度
- 智能小区物联网应用系统
- 《Excel数据获取与处理实战》 课件 陈青 第3、4章 数据的输入、工作表的格式化
- 溶剂泄露应急处置
- GMP基础知识培训
- 病从口入教案反思
- 胸腔闭式引流器的护理
- 城市娱乐设施建筑平房施工合同
- 《医疗机构工作人员廉洁从业九项准则》制定主题学习课件
- 《大学美育》 课件 22.模块五 第二十二章 光影交织的摄影艺术之美
- 北师大版小学数学六年级上册《分数混合运算(二)》示范课教学设 计
- 2024秋季新人教七上全册重点短语句型小纸条【空白版】
- 2024-2025一年级上册科学教科版1.5 《植物的变化》课件
- 2024新教科版一年级科学上册第一单元《周围的植物》全部教案
- 2024年新青岛版(六三制)六年级上册科学全册知识点(背诵专用)
- 【良品铺子资本结构问题及优化对策分析案例10000字】
- 前程无忧的题库
- 担保法全文(2024版)
- 《中小型机场空管设施防雷装置检测技术规范》编制说明
评论
0/150
提交评论