版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选文库华师大版八年级数学下函数及其图像知识点归纳一变量与函数1 函数的定义:一般的,在某个变化过程中有两个变量x和y,对于x的每一个数值y都有唯一的值与之对应,我们说x叫做自变量,y叫做因变量,y叫做x的函数。2自变量的取值范围:(1)能够使函数有意义的自变量的取值全体。(2)确定函数自变量的取值范围要注意以下两点:一是使自变量所在的代数式有意义;二是使函数在实际问题中有实际意义。(3)不同函数关系式自变量取值范围的确定:函数关系式为整式时自变量的取值范围是全体实数。函数关系式为分式时自变量的取值范围是使分母不为零的全体实数。函数关系式为二次根式时自变量的取值范围是使被开方数大于或等于零的全
2、体实数。3 函数值:当自变量取某一数值时对应的函数值。这里有三种类型的问题:(1)当已知自变量的值求函数值就是求代数式的值。(2)当已知函数值求自变量的值就是解方程。(3)当给定函数值的一个取值范围,欲求自变量的取值范围时实质上就是解不等式或不等式组。二平面直角坐标系:1各象限内点的坐标的特征:(1)点p(x,y)在第一象限x0,y0.(2)点p(x,y)在第二象限x0,y0.(3)点p(x,y)在第三象限x0,y0(4)点p(x,y)在第四象限x0,y0.2 坐标轴上的点的坐标的特征:(1)点p(x,y)在x轴上x为任意实数,y=0(2)点p(x,y)在y轴上x=0,y为任意实数3 关于x轴
3、,y轴,原点对称的点的坐标的特征:(1)点p(x,y)关于x轴对称的点的坐标为(x,-y).(2)点p(x,y)关于y轴对称的点的坐标为(-x,y).(3)点p(x,y)关于原点对称的点的坐标为(-x,-y)4 两条坐标轴夹角平分在线的点的坐标的特征:(1)点p(x,y)在第一、三象限夹角平分在线x=y.(2)点p(x,y)在第二,四象限夹角平分在线x+y=05与坐标轴平行的直线上的点的坐标的特征:(1)位于平行于x轴的直线上的所有点的纵坐标相同。(2)位于平行于y轴的直线上的所有点的横坐标相同。6点到坐标轴及原点的距离:(1)点p(x,y)到轴的距离为 y.(2)点p(x,y)到y轴的距离为
4、x.(3)点p(x,y)到原点的距离为(4)同在x轴上的两点A(x1,0)与B(x2,0)之间的距离为AB=|x1-x2|(5)同在y轴上的两点C(0,y1)与D(0,y2)之间的距离为CD=|y1-y2|三函数的图像函数图像上的点与其解析式的关系1函数图像上任意一点px,y中的x、y满足函数关系式,满足函数关系式的一对对应值x,y都在函数的图像上。2判断点px,y是否在函数图像上的方法,将这个点的坐标 x,y代入函数关系式,如果满足函数关系式,那么这个点就在函数的图像上,如果不满足函数关系式,那么,这个点就不在函数的图像上。四一次函数(一) 一次函数的定义1定义:含有自变量的式子为一次整式,
5、即形如式子ykx+b(其中k和b为常数,k0)叫做一次函数。正比例函数:在一次函数y=kx+b中如果b=0即变为y=kx(其中k0),这样的函数叫做正比例函数。2注意:(1)由一次函数和正比例函数的定义可知; 函数是一次函数解析式为ykx+b的形式。 函数是正比例函数解析式为y=kx的形式。(2)一次函数解析式y=kx+b的结构特征: k0 x的次数是1 常数b为任意实数(3)正比例函数解析式y=kx的结构特征 k0 x的次数是1 常数b=03说明:在y=kx+b中若k=0则y=bb为常数这样的函数叫做常数函数,它不是一次函数。4正比例函数与一次函数的关系:正比例函数是一次函数的特例,一次函数
6、包含正比例函数。一次函数y=kx+b,当b=0时为正比例函数一次函数y=kx+b,当b0时一般的一次函数(二) 一次函数的图像1一次函数图像的形状:一次函数y=kx+b的图像是一条直线,通常称为直线y=kx+b正比例函数y=kx的图像也是一条直线,称为直线y=kx2一次函数图像的主要特点:一次函数y=kx+b的图像经过点0,b的直线,正比例函数y=kx+b的图像是经过原点0,0的直线注意:点0,b是直线y=kx+b与y轴的交点。 当b0时,此时交点在y轴的正半轴上, 当b0时,此时交点在y轴的负半轴上, 当b=0时,此时交点在原点,这时的一次函数就是正比例函数。3一次函数图像的画法: 根据两点
7、能画一条直线并且只能画一条直线,即两点确定一条直线,所以画一次函数的图像时,只要先描出两点,在连成直线即可。那么,先描出哪两点比较好呢?选两点应以计算和描点简单为原则,一般来说,当b0时,一般的一次函数y=kx+b的图像,应选取它与两个坐标轴的交点0,b与-,0;当b=0时,画正比例函数y=kx的图像,通常取0,0与1,k两点,个别情况下可以做些变通,例如画函数y=x的图像,可以取0,0与1,两点,也可以取0,0与3,2两点。4直线y=kx+b与坐标轴的交点(1) 令x=0,则y=b所以直线y=kx+b与y轴的交点坐标为0,b(2) 令y=0,则kx+b=0所以x=-所以直线y=kx+b与x轴
8、的交点坐标为-,0注意:此时直线y=kx+b与x轴,y轴围成的三角形面积S=-b5两直线在直角坐标系内的位置关系:(1)两直线的解析式中当k相同时,其位置关系是平行,其中一条直线可以看作是另一条平移得到的,平移规律是“左减右加,上加下减”(2)两直线的解析式中当b相同时,其位置关系是相交,交点坐标为0,b.(三)一次函数的性质1正比例函数的性质(1)当k0时,图像经过第一、三象限,y随x的增大而增大,直线y=kx从左到右上升。(2)当k0时,图像经过第二、四象限,y随x的增大而减小,直线y=kx从左到右下降。2一次函数y=kx+b的性质(1)当k0时,直线y=kx+b从左到右上升,此时y随x的
9、增大而增大。(2)当k0时,直线y=kx+b从左到右下降,此时y随x的增大而减小。(3)当b0时,直线y=kx+b与y轴正半轴相交。(4)当b0时,直线y=kx+b与y轴负半轴相交。3直线y=kx+b的位置与k、b的符号之间的关系直线y=kx+b的位置是由k与b的符号决定的,其中k决定直线从左到右呈上升趋势还是下降趋势,b决定直线与y轴交点的位置是在y轴的正半轴,还是负半轴,还是原点。k和b综合起来决定直线y=kx+b在直角坐标系中的位置共有六种情况:当k0,b0时,直线经过第一、二、三象限,不经过第四象限;当k0,b0时,直线经过第一、三、四象限,不经过第二象限;当k0, b0时,直线经过第
10、一、二、四象限,不经过第三象限;当k0,b0时,直线经过第二、三、四象限,不经过第一象限;当k0,b=0时,直线经过第一、三象限;当k0,b=0时,直线经过第二、四象限。(四)正比例函数与一次函数解析式的确定1确定一个正比例函数就是要确定正比例函数解析式y=kxk0中的常数k;确定一个一次函数需要确定一次函数解析式一般形式y=kx+bk0中的常数k和b,解这类问题的一般方法是待定系数法。2待定系数法:先设出待求函数关系式其中含有未知的系数,再根据已知条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法。其中的未知系数也称待定系数,如正比例函数y=kx中的k,一次函数y=k
11、x+b中的k和b都是待确定的系数。3用待定系数法求函数解析式的一般步骤:(1)设出含有待定系数的解析式;(2)把已知条件自变量与函数的对应值代入解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数;(4)将求得的待定系数的值代回所设的解析式。注意:通常正比例函数解析式设y=kx,只有一个待定系数k,一般只需一对x与y的对应值即可;一次函数解析式设y=kx+b,其中有两个待定系数k和b,因而需要两对x与y的对应值,才能求出k和b的值。五反比例函数(一)反比例函数定义1一般的,函数y=k是常数,k0叫做反比例函数,反比例函数的解析式也可以写成y=kx-1的形式,其中k叫做比例
12、系数。2反比例函数解析式的主要特征:(1)等号左边是函数y,右边是一个分式,分子是不为零的常数k,分母中含有自变量x,且x的指数是1,若写成y=kx-1的形式,则x的指数是-1。(2)比例系数“k0”是反比例函数定义的重要组成部分。(3)自变量x的取值范围是x0的一切实数。(二)反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限,它们关于原点成中心对称。由于反比例函数中自变量x0,函数y0,所以它的图像与x轴和y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。(三)反比例函数的性质1当k0时,图像在第一、三象限,在每个象限
13、内,曲线从左到右下降,也就是在每个象限内y随x的增大而减小。2当k0时,图像在第二、四象限,在每个象限内,曲线从左到右上升,也就是在每个象限内y随x的增大而增大。(四)反比例函数解析式的确定确定解析式的方法仍是待定系数法,由于反比例函数y=中只有一个待定系数,因此只需要一对x与y的对应值或图像上一个点的坐标,即可求出k的值,从而确定其解析式。(五)“反比例关系”与“反比例函数”的区别与联系反比例关系是小学学过的概念:如果xy=kk是常数k0,那么x与y这两个量成反比例关系,这里x与y既可以代表单独的一个字母也可以代表多项式或单项式,例如y+3与x成反比例则有y+3=,y与x成反比例,则y=,成
14、反比例关系不一定是反比例函数,但是反比例函数y=中的两个变量必定成反比例关系。(六)反比例函数y=k0中的比例系数k的几何意义 1如图,过双曲线上一点作x轴、y轴的垂线PM、PN,所得矩形PMON面积为|k|。2连结PO,则SPOM=S矩形=|k|。六 函数的应用1利用图像比较两个函数值的大小 在同一直角坐标系中的两个函数图像,如果其中一个函数的图像在另一个函数图像的上方,则该函数值就比另一个函数值大,若在下方,则该函数值就比另一个函数值小,而其交点的横坐标就是分界点。2两个一次函数图像的交点与二元一次方程组的关系 如果两个一次函数的图像相交,则交点坐标必定同时满足两个函数解析式,故交点坐标是有两个函数解析式组成的二元一次方程组的解。3一次函数与方程、不等式的关系(1)一次函数y=kx+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版白酒销售顾问销售数据分析合同3篇
- 2025年度个人自用房产交易合同范本4篇
- 二零二五版建筑公司员工劳动合同范本3篇
- 一个简短的自我介绍四篇
- 2024年中级经济师考试题库含答案(b卷)
- 挡墙及护坡施工方案
- 训练音乐节奏课程设计
- 2025年度退休员工专业培训与指导合同3篇
- 输电线路防雷施工方案
- 二零二五版合伙购买二手房装修及改造协议3篇
- 中小银行上云趋势研究分析报告
- 机电安装工程安全培训
- 洗浴部前台收银员岗位职责
- 2024年辅警考试公基常识300题(附解析)
- GB/T 43650-2024野生动物及其制品DNA物种鉴定技术规程
- 暴发性心肌炎查房
- 工程质保金返还审批单
- 【可行性报告】2023年电动自行车项目可行性研究分析报告
- 五月天歌词全集
- 商品退换货申请表模板
- 实习单位鉴定表(模板)
评论
0/150
提交评论