无功补偿SVG和SVC的区别报告_第1页
无功补偿SVG和SVC的区别报告_第2页
无功补偿SVG和SVC的区别报告_第3页
无功补偿SVG和SVC的区别报告_第4页
无功补偿SVG和SVC的区别报告_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、无功补偿SVG、SVC、MCR、TCR、TSC区别TSCTCR型SVCMCR型SVCSVG吸收无功分级连续连续连续响应时间20ms20ms100ms10ms运行范围容性感性到容性感性到容性感性到容性谐波受系统谐波影响大,自身不产生谐波受系统谐波影响大,自身产生大量谐波受系统谐波影响大,自身产生较大量谐波受系统谐波影响小,可抑制系统谐波受系统阻抗影响大大大无损耗小大较大小分相调节能力有限可以不可可以噪声较小较小小体积(同等容量)大大较大小TSC:晶闸管投切电容器,采用无源器件(电容器)进行无功补偿,分级补偿,不能实现连续可调。TCR:晶闸管控制电抗器。MCR:磁控电抗器,与TCR类似,需要和电容

2、柜配合实现动态无功补偿,可实现连续可调。SVC:静止无功补偿装置,采用无源器件进行无功补偿的技术总称,包括:TSC、TCR等,“静止”是与同步调相机对应,一般来说将使用晶闸管进行控制的补偿装置成为“SVC。SVG:静止无功发生器,采用电能变换技术实现的无功补偿。SVG与其它的最大区别在于能主动发出无功电流,补偿负载无功电流。而其它均为无源方式,依靠无源器件自身属性进行无功补偿。静止无功补偿器(SVC) 与静止无功发生器(SVG)有什么异同?静止无功补偿器(SVC)该装置产生无功和滤除谐波是靠其电容和电抗本身的性质产生的。静止无功发生器(SVG)该装置产生无功和滤除谐波是靠其内部电子开关频繁动作

3、产生无功电流和与谐波电流相反的电流。相关知识静止无功补偿器又称SVC,传统无功补偿用断路器或接触器投切电容,SCV用可控硅等电子开关,没有机械运动部分,所以较静态无功补偿装置。 通常的SVC组成部分为1.固定电容器和固定电抗器组成的一个无功补偿加滤波支路 该部分适当选择电抗器和电容器容量,可滤除电网谐波,并补偿容性无功,将电网补偿到容性状态。2.固定电抗器 3.可控硅电子开关 可控硅用来调节电抗器导通角,改变感性无功输出来抵消补偿滤波支路容性无功,并保持在感性较高功率因数。动态无功补偿技术应用夏祖华1,沈斐2,胡爱军2,童陆园摘 要: 合理的无功功率补偿对于对输配电系统非常重要。无功补偿装置已

4、经由同步调相机、并联电容器发展到基于大功率电力电子器件的静止补偿装置。文章在描述动态无功补偿技术在国内外应用现状的同时,详细介绍了SVC及STATCOM的基本原理、功能以及它们在输电网、配电网、大型工矿企业的具体应用,并对二者的技术经济性能做了详尽的比较。关键词:动态无功补偿;SVC;STATCOM;电压稳定;应用在电力系统中,如果无功储备不足将会导致电网电压水平降低,冲击性的无功功率负载还会使电压产生剧烈的波动,恶化电网的供电质量。对于给定的有功分布,要想使无功潮流最小以减少系统的损耗,就要求对无功功率的流向与转移进行很好的控制。随着电网的不断发展,对无功功率进行控制与补偿的重要性与日俱增:

5、输电网络对运行效率的要求日益提高,为了有效利用输变电容量,应对无功进行就地补偿;电源(尤其水电)远离负荷中心,远距离的输电需要灵活调控无功以支撑解决稳定性及电压控制问题;配电网中存在大量的电感性负载,在运行中消耗大量无功,使得配电系统损耗大大增加;直流输电系统要求在换流器的交流侧进行无功控制;用户对于供电电能质量的要求日益提高。因此,对电网的无功进行就地补偿,尤其是动态补偿,在输配电系统中十分必要。1 无功补偿装置的发展电力系统中,常见的无功控制方法有同步发电机、同步电动机、同步调相机、并联电容器和静止无功补偿装置等,这里主要讨论静止无功补偿装置。静止无功补偿技术经历了3代:第1代为机械式投切

6、的无源补偿装置,属于慢速无功补偿装置,在电力系统中应用较早,目前仍在应用;第2代为晶闸管投切的静止无功补偿器(SVC),属无源、快速动态无功补偿装置,出现于20世纪70年代,国外应用普遍,我国目前有一定应用,主要用于配电系统中,输电网中应用很少;第3代为基于电压 源换流器的静止同步补偿器(Static Synchronous Compensator,STATCOM),亦称ASVG,属快速的动态无功补偿装置1,国外从20世纪80年代开始研究,90年代末得到较广泛的应用,我国的第一个STATCOM示范应用工程已经在河南电网投运。早期的无功补偿装置主要是无源装置,方法是在系统母线上并联或者在线路中串

7、联一定容量的电容器或者电抗器。这些补偿措施改变了网络参数,特别是改变了波阻抗、电气距离和系统母线上的输入阻抗。无源装置使用机械开关,它不具备快速性、反复性、连续性的特点, 因而不能实现短时纠正电压升高或降落的功能。20世纪70年代以来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容器(TSC)以及二者 的混合装置(TCR+TSC)等主要形式组成的静止无功补偿器(SVC)得到快速发展2。SVC可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。SVC作为系统补偿时可以连续调节并与系统进行无功功率交换,同时还具有较快的响应速度, 它能够维持端电压恒定。SVC虽然能对系统无功进

8、行有效的补偿,但是由于换流元件关断不可控,因而容易产生较大 的谐波电流,而且其对电网电压波动的调节能力不够理想3。随着大功率全控型电力电子器件GTO、IGBT及IGCT的出现,特别是相控技术、脉宽调制技术(PWM)、四象限变流技术的提出使得电力电子逆变技术得到快速发展,以此为基础的无功补偿技术也得以迅速发展。静止同步补偿器,作为FACTS家族最重要的成员,在美国、德国、日本、中国相继得到成功应用。电压型的STATCOM直流侧采用直流电容为储能元件,通过逆变器中电力半导体开关的通断将直流侧电压转换成交流侧与电网同频率的输出电压。当只考虑基波频率时,STATCOM可 以看成一个与电网同频率的交流电

9、压源通过电抗器联到电网上。由于STATCOM直流侧电容仅起电压支撑作用,所以相对于SVC中的电容容量要小得多。此外,STATCOM和SVC相比还拥有调节速度更快、调节范围更广、欠压条件下的无功调节能力更强的优点,同时谐波含量和占地面积都大大减小。2 国内外电网动态无功补偿的现状我国电网中目前使用最为广泛的补偿装置是机械投切的并联电容器组。为满足调压要求,在低压供电网络中装设了大量的并联电容器组,在中压配电网络中装设了少量的并联电容器组。20世纪70年代初,武汉钢铁公司在1.7 cm轧机工程中进口了由比利时直流励磁饱和电抗器与日本电容器组成的静止补偿装置后,国内才对动态无功补偿问题引起了重视。自

10、20世纪80年代以来,我国对晶闸管控制的SVC投入了大量研发力量,目前已有了一定的技术基础,但高压大容量产品仍主要依靠进口。目前,我国输电系统中一共有5地6套大容量SVC投入使用,它们分别被装设在广东江门、湖南云田、湖北凤凰山(2套)、河南小刘以及辽宁沙岭的500 kV变电站中。此类SVC多为进口,其中有3套是ABB公司的产品。高电压等级下SVC面临的最为严重的问题是电容器爆炸,如广东江门500 kV变电站中SVC运行5年后并联电容器爆炸,湖南云田500 kV变电站中SVC自1988年以来发生了4次电容器组爆炸事故。在380 V10 kV配电系统中,近年来主要采用无平滑调节功能的TSC实现分级

11、无功补偿。SVC在大型工矿企业中的应用较为广泛,在钢铁企业中的应用尤为突出,武汉钢铁公司、包头钢铁公司、宝山钢铁公司、济南钢铁公司、张家港沙钢铁公司、天津钢管公司等均装有该补偿装置。如济南钢铁公司中厚板厂二期工程在35 kV母线上就安装了由西门子公司设计制造的一套容量为25 Mvar的 SVC,2001年底带负荷一次投运成功。1999年3月,我国第一台工业化STATCOM在河南省洛阳市朝阳变电站成功并 网运行,标志着我国掌握了高压大容量FACTS设备的设计制造技术4。该STATCOM基于GTO器件,主电路核心部分是电压型多重化逆变器,容量为20 Mvar,由清华大学电机系柔性输配电系统研究所与

12、河南省电力局联合研制。为了进行机理研究,事先还研制了1台300 kvar中间工业试验装置,于1995年8月并网闭环运行。目前,清华大学电机系正和上海市电力局联合研制基于链式结构的50 Mvar STATCOM,它将应用于上海500 kV电网中。从国际范围来讲,目前SVC与STATCOM都已得到普遍的应用。SVC出现早,应用时间长,仅ABB公司,其目前在全世界投运的SVC就已超过370套,ABB与西门子两个公司已安装的SVC总容量约为9万Mvar(包括已退役装置)。STATCOM装置在20世纪主要以示范工程为主,从上世纪90年代末到本世纪初,STATCOM在日本及欧美得到了广泛应用,尤其是在冶金

13、、铁道等需要快速动态无功补偿的场合。20012003年,美国在输电网接连投运了百Mvar级的大容量STATCOM,表明STATCOM在输电网中已完全进入实用阶段。由于都是基于电压源换流器技术,这些STATCOM装置仅通过改变母线接线方式,就可以变成背靠背的直流输电,能对电网的潮流进行更有效的控制。据ABB公司2001的统计,目前全世界SVC的投运容量超过32000 Mvar,STATCOM的投运容量已超过1 500Mvar。3 动态无功补偿装置的工作原理及其在输电网中的应用3.1SVC的工作原理及在电网中应用TCR+TSC型SVC的基本拓扑结构见图1。它由1台TCR、2台TSC以及2个无源滤

14、波器组成,在实际系统中,TSC及无源滤波的组数可根据需要设置图1TCR+TSC型SVC基本拓扑结构TCR的工作原理是通过控制与相控电抗器连接的反并联晶闸管对的移相触发脉冲来改变电抗器等效电纳的大小,从而输出连续可变的无功功率。图1中两个晶闸管分别按照单相半波交流开关运行,通过改变控制角可以改变电感中通过的电流。的计量以电压过零点为基准,在90180之间可部分导通,导通角增大则电流基波分量减小,等价于用增大电抗器的电抗来减小基波无功功率。导通角在90180之间连续调节时电流也从额定到0连续变化,TCR提供的补偿电流中含有谐波分量。TSC的工作原理是根据负载感性无功功率的变化通过反并联晶闸管对来切

15、除或者投入电容器。这里,晶闸管只是作为投切开关,而不像TCR中的晶闸管起相控作用。在实际系统中,每个电容器组都要串联一个阻尼电抗器,以降低非正常运行状态下产生的对晶闸管的冲击电流值,同时避免与系统产生谐振。用晶闸管投切电容器组时,通常选取系统电压峰值时或者过零点时作为投切动作的必要条件。由于TSC中的电容器只是在两个极端的电流值之间切换, 因此它不会产生谐波,但它对无功功率的补偿是阶跃的。TCR和TSC组合后的运行原理为:当系统电压低于设定的运行电压时,根据需要补偿的无功量投入适当组数的电容器组,并略有一点正偏差(过补偿),此时再利用TCR调节输出的感性无功功率来抵消这部分过补偿容性无功;当系

16、统电压高于设定电压时,则切除所有电容器组,只留有TCR运行。图2给出了该控制方式下稳定系统电压时采用的控制框图,控制器所需信号为系统线电压和线电流。如果用于补偿系统无功功率或校正系统功率因数,只需将电压设定值改为相应的无功设定值或功率因数设定值即可。控制规律采用可变参数的PI调节器,其算法简单、可靠,而且易实现。图2SVC面向系统平衡策略控制框图SVC应用于电力系统中对系统产生的影响有:增强系统的暂态稳定性。SVC安装于中长距离输电线路中点可以改善系统的暂态稳定性,其P-特性曲线给故障后电机提供的减速面积和暂态裕量比没有补偿的情况下要大。有力的支持系统电压,防止电压崩溃。系统发生故障或者负荷电

17、流(尤其是无功电流)急剧增高的瞬间,SVC 能够对系统进行瞬时无功补偿来支撑电压以抑制电压崩溃的趋势。有效的阻尼系统振荡。TCR可以用极高的速度平滑地调节无功和电压,具有调制状态工作的可能。它可以在一个与工频50 Hz不同的频率下作适当浮动,如果浮动与系统摇摆或振荡频率相同而相位相反,就可以增大系统的阻尼而抑制振荡。补偿不平衡负荷。负荷不平衡时,SVC不平衡控制策略可以补偿系统使供电电流变成三相平衡,能够使单相负荷变成三相平衡负荷而没有无功分量。抑制负荷侧电压波动 和闪变,校正功率因数。SVC也有其自身的弱点,它是阻抗型补偿,随着电压的降低其无功输出也会与电压成平方关系降低,若采用基于电压源逆

18、变器的STATCOM将会取得更好的效果。3.2STATCOM的工作原理及在电网中应用我国首次研制成功的20 Mvar STATCOM的总体构成框图见图3。它主要由直流电压源(通常以直流电容代替)、基于GTO的逆变器和连接变压器3部分组成。以二极管构成的整流桥从交流系统吸取少量有功功率对直流电容C充电,保持其电压稳定。控制器根据电网无功变化情况,通过6 个全控型开关器件构成的三相逆变器向系统输入感性或容性无功。STATCOM 向系统注入的无功Q为 式中,Vs为系统电压;Rs为逆变桥等效电阻;为SVG输出电压与Vs的夹角。由公式可知,通过调节的大小,就可以控制STATCOM注入系统的无功功率。由于

19、Rs很小,所以调节范围非常大。如果多台STATCOM并联移相输出,则既可提升补偿容量,又能抑制装置本身的谐波电流。图320 Mvar STATCOM总体构成框图TATCOM在控制策略上与SVC的区别在于5:在SVC装置中,由外闭环调节器输出的控制信号用作SVC 等效电纳的参考值,以此信号来控制SVC 调节到所需的等效电纳。而在STATCOM中,外闭环调节器输出的控制信号则被视为补偿器应产生的无功电流(或无功功率)的参考值,然后由参考值调节STATCOM来产生所需无功电流。其具体控制方法可分为间接控制和直接控制两大类,STATCOM 采用电流直接控制方法的响应速度和控制精度比 间接控制法有很大的

20、提高。STATCOM在输电系统中的作为无功补偿装置用时,除具有SVC的所有良好性能外,运行范围更宽,且输出无功电流不受系统电压影响。采用多重化技术的STATCOM,谐波含量少,不需要滤波器,能够有力的提高系统的暂态性能。3.3STATCOM及SVC应用于输电网的仿真研究STATCOM和SVC应用于大规模输电网中以加强动态无功补偿、改善电网末端或大负荷中心电压稳定性以及作为直流输电无功控制设备,已经做了大量的研究工作。近年来,由于经济的快速发展,我国形成了京津唐、长三角以及珠三角3大负荷中心。这3个地区都具有远离电源、缺乏足够的无功备用以及空调负荷比例高等特点,因此,均有不同程度的电压稳定问题。

21、根据已有的仿真分析6,北京电网在负荷突增时会出现暂态电压失稳现象,需要在安定、老君堂、西大望等地安装STATCOM(或者SVC)以防止电压崩溃。上海的黄渡分区内150 Mvar 调相机退出运行后,只有一个12 MW的小火电接入,并且这里将是三峡直流的落点,若发生故障将会出现严重的电压失稳,需要安装STATCOM提供快速的无功支撑,目前正在研制的50 Mvar STATCOM将在这里投入使用。广东电网是拥有多直流的交直流混联系统,直流落点本身需要大量的无功支撑,STATCOM无疑是最佳的选择;同时在直流退出运行的情况下,需要在交流长输电线路中点贺州安装STATCOM以提升线路传输极限,维持电压稳

22、定;此外,负荷突增情况下,弱受端系统会出现持续的电压跌落,选择合适的地点安装STATCOM可以增强系统的电压维持能力。4 动态无功补偿装置在配电网及大型工矿企业的应用4.1SVC在配电网和工矿企业的应用无功传输对配电网的影响,一是会导致电力用户电压水平的恶化,二是会造成线损的上升。为了降低无功传输带来的不利影响,可以在配电网无功负荷集中处安装一定容量的SVC,由SVC向负荷点就近提供无功功率,以减少系统流入的Q,这样不仅可使网络产生的压降U变小,同时也可使网络的线损A减小。当在配电网络中并入容量为Qb的SVC之后,网络的压降和线损为由以上两式可见,Qb增大,压降U就会变小,即降损的效果就会增大

23、;当Qb=Q时,由无功传输带来的压降损失和线损为0,其改善电压和降损的效果达到最佳;如果QbQ,则会出现无功倒流入系统的情况,这时压降损失反而会增大,降损的效果也会逐步开始恶化。所以,配网侧SVC在一定条件下不仅可以改善配网用户的电压质量 ,同时还可以降损节电。4.2DSTATCOM基本原理及应用在配电网中,将中小容量的STATCOM安装在某些特殊负荷(如电弧炉)附近,可以显著地改善负荷与公共电网连接点处的电能质量,如提高功率因数、克服三相不平衡、消除电压闪变和电压波动、抑止谐波污染等。这种在配电网中用来提高电能质量的STATCOM一般称为配电同步补偿器(Distribution STATCO

24、M,DSTATCOM)。和高压大容量STATCOM类似,DSTATCOM的基本原理是将自换相桥式电路通过电抗器并联在电网上或者直接并联在电网上,适当地调节桥式电路交流侧输出电压的幅值和相位,或者直接控制其交流侧电流就可以使该电路吸收或者发出满足要求的无功电流,实现 动态无功补偿的目的。DSTATCOM主要应用在经济效益受电能质量影响较大的工矿企业,如钢铁、冶金、矿山、电气化铁路、风电厂以及其他具有或者靠近冲击性负荷和大容量电动机的工业领域。DSTATCOM能够有效改善配电网的电能质量,可以为配电网中的厂矿用户带来可观的经济效益。以瑞典Uddeholm Tooling钢铁公司的DSTATCOM项

25、目为例,该钢厂有1台电弧炉和1台精炼炉,额定功率共37.5 MVA,2座电炉均由132 kV线路通过132/10.5 kV变压器供电。在其10.5 kV供电母线上安装了1套22 MVA的DSTATCOM设备后,钢厂的各项指标发生了下列变化:功率因数高于0.95,避免了电力部门的罚款。冶炼时间从124 min/炉 降至106 min/炉,缩短了18 min/炉,即14.5%。电极消耗量从2.39 kg/t降至2.12 kg/t,减少了0.2 kg/t,即8.4%。耗电量从625 kWh/t降至600 kWh/t,减少了25 kWh/t,即4%。电压闪变减少35倍。熔化期时,DSTATCOM投运前

26、10 kV母线电压在9.710.8 kV之间波动,波动幅度为1.1 kV,即10.5%,而投运后,电压为10.4 kV,波动幅度在0.1 kV之内,即0.95%。按目前生产资料价格、电价以及年产量计算,安装DSTATCOM后,该钢厂每年因节能 降耗和增产所创造经济效益的总和有逾千万元人民币。5 STATCOM与SVC的技术经济比较STATCOM(包括DSTATCOM)和SVC都为动态无功补偿装置,但它们的特性功 能却存在着相当的差异。一般说来,STATCOM和SVC相比有下列优越性:(1) STATCOM输出电流不依赖于电压,表现为恒流源特性,具有更宽的运行范围。而SVC本质是阻抗型补偿,输出电流和电压成线性关系。因此系统电压变低时,同容量STATCOM可以 比SVC提供更大的补偿容量。(2) STATCOM比SVC具有更快的响应速度,因而更适合抑制电压闪变。STATCOM响应时间在10 ms以内,而SVC响应时间一般在2040 ms。STATCOM从额定容性无功功率变为额定感性无 功功率(或相反)可在1 ms之内完成,这种响应速度完全可以胜任对冲击性负荷的补偿。(3) STATCOM采用桥式交流电路的多重化技术、多电平技术或PWM技术来消除次数较低的谐波,并使较高次数如7、11等次谐波减小到可以接受的程度。而SVC本身要产生一定量的谐波,如TCR

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论