




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、近世代数复习提纲群论部分一、基本概念1、群的定义(四个等价定义)2、基本性质(1)单位元的唯一性;(2)逆元的唯一性;(3);(4);(5);。3、元素的阶使成立的最小正整数叫做元素的阶,记作;若这样的正整数不存在,则称的阶是无限的,记作。(1)。(2)若,则;由可得。(3)当群是有限群时,有且。(4),其中。证明 设。因为,所以。另一方面,因为,所以,从而,又,所以,故。注:1 ,但若,且,则有(P70.3)。2 ;但。例1 令,则关于普通乘法作成群。显然,1是的单位元,所以,有,但。二、群的几种基本类型1、有限群:元素个数(即阶)有限的群,叫做有限群。2、无限群:元素个数(即阶)无限的群,
2、叫做无限群。3、变换群:集合上若干一一变换关于变换乘法作成的群,叫做集合上的变换群。(1)变换群的单位元是的恒等变换。(2)的所有一一变换的集合关于变换的乘法作成上最大的变换群。(3)一般地,变换群不是交换群。(4)任一个群都与一个变换群同构。4、置换群:有限集合上的一一变换叫做置换,若干置换作成的变换群叫做置换群。即有限集合上的变换群叫做置换群。例2 设是中元素,求。解 (1)元集合的所有置换作成的置换群,叫做次对称群,记作。(2)。(3)每个元置换都可表示为若干个没有公共数字的循环置换的乘积。(4)。(5)任一有限群都与一个置换群同构。5、循环群:若群中存在元素,使得,则称是循环群。(1)
3、循环群是交换群(P61.1)。(2)素数阶群是循环群(P70.1)。(3)循环群的子群是循环群(P65.4)。(4)当时,; 当时,。(5)(6)当时,有且仅有两个生成元; 当时,有且仅有个生成元,这里表示小于且与互素的正整数个数。且当时,是的生成元。(7)若与同态,则1也是循环群;2 当时,;3 的阶整除的阶。例3(P79、3)三、子群1、定义:设是群的非空子集,若关于的于是也构成群,则称是的子群,记作。2、等价条件(1)群的非空子集是子群,有 ,有(2)群的非空有限子集是子群,有。3、运算(1)若,则(可推广到任意多个情形)。(2)若,则未必是的子群。(3)若,则未必是的子群。(4)若,则
4、不是的子群。4、陪集设,则的子集叫做的包含的左陪集;的子集叫做的包含的右陪集。(1)一般地,。(2);。(3)。(4)。(5)是的一个分类,也是的一个分类。即,且(当时)或,且(当时)5、指数:群的子群的左陪集(右陪集)个数叫做的指数,记作。当时,有。6、不变子群设是群的子群,若,都有,则称是的不变子群,记作。群的子群是不变子群,有 ,有。例4(P74、1)例5(P74、3)1不变子群的交是不变子群。2交换群的子群是不变子群。3群的中心是的不变子群。4设且有一个是不变子群,则。7、商群 设,令,定义则它是的代数运算,叫做陪集的乘法。关于陪集的乘法作成群,叫做关于的商群。当时,有。四、群同态 设
5、是群到的同态满射,则1、也是群;2、;3、;4、;5、;6、;7、;8、;9、;10、。注:若,则映射是到的同态满射,叫做自然同态。环论部分一、基本概念1、环的定义设是一个非空集合,“”与“。”分别是加法与乘法运算,若(1)关于“”作成交换群(叫做加群);(2)关于“。”封闭;(3),有;(4),有则称关于“”与“。”作成环。2、基本性质(1),;(2);(3);(4);(5);(6);(7);(8)当是交换环时,有。3、环的几种基本类型 设是环(1)交换环:,有。例6(P89.2)(2)有单位元环:存在,使得,有。(3)无零因子环:,当时,。注:无零因子环的特征:无零因子环中的非零元关于加法
6、的阶,叫做的特征。1 无零因子环的特征,或是或是素数;2 当无零因子环的元素个数有限时,的特征整除。(4)整环:有单位元无零因子的交换环。(5)除环:有单位元,且非零元都有逆元。(6)域:交换的除环。二、两类特殊的环1、模剩余类环:。(1)是有单位元的交换环,且是的单位元;(2),则不是零因子;(3)无零因子是素数;(4),则不是零因子是可逆元;(5)是域是素数。2、多项式环:。例7(P109.2)三、理想1、定义:设是环的非空子集,若(1),有;(2),有。则称是环的理想子环,简称理想。注:1 理想一定是子环,但子环不一定是理想。2 环的中心是子环,但未必是理想。2、运算(1)若是环的理想,
7、则也是环的理想(可推广到任意多个情形)。(2)若是环的理想,则未必是环的理想。(3)若是环的理想,则也是环的理想。(4)若是环的理想,则不是环的理想。3、生成理想:设环的一个非空子集,则的所有包含的理想的交仍是的理想,这个理想叫做由的理想,记作。(1)是的包含的最小理想。(2)当时,记,叫做由生成的主理想。1 当是交换环时,;2 当是有单位元环时,;3 当是有单位元的交换环环时,。(3),记。且有例8(P113.例3)例9(P114.3)4、最大理想:设是环的理想,且。若包含的环的理想,只有与,则称是环的最大理想(极大理想)。(1)环的理想是最大理想 当的理想适合时,必有或。(2)环的理想是最大理想 商环只有平凡理想。(3)设是有单位元的交换环,则的理想是最大理想 商环是域。例10(P119.1)已知:。求证:是域。证明:因为是有单位元的交换环,所以,存在使得所以,由此可见,当奇偶性相同时,同为偶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省抚州市金溪县2025年小升初考试数学试卷含解析
- 湖北职业技术学院《橄榄球》2023-2024学年第一学期期末试卷
- 吉林省长春市高新区重点中学2025届下学期初三化学试题期初联考考试试卷含解析
- 江苏省滨淮2025届初三下学期化学试题3月份考试试卷含解析
- 浙江省金华市2025届六年级下学期5月模拟预测数学试题含解析
- 湖南理工学院《基本乐理(一)》2023-2024学年第二学期期末试卷
- 江西财经职业学院《自然资源调查与评估》2023-2024学年第二学期期末试卷
- 西南财经大学《餐饮空间设计》2023-2024学年第二学期期末试卷
- 商丘市重点中学2024-2025学年初三下期末大联考化学试题含解析
- 浙江广厦建设职业技术大学《高等流体力学(全英文)》2023-2024学年第二学期期末试卷
- 不锈钢304焊接工艺评定报告PQR(全氩弧)
- 《专利法》课程思政教学案例(一等奖)
- 安全事故案例图片合集事故警示
- 互联网+智慧校园解决方案(最新详细方案)
- CPK基本知识及实例
- 工程建筑给排水外文文献翻译1
- 200句话搞定上海中考单词(精华版)
- 船舶辅锅炉的自动控制系统分析
- 新员工培训考试【图书专员】
- 防伪包装技术
- 49000DWT江海直达成品油船设计
评论
0/150
提交评论