教案范例(初中数学)_第1页
教案范例(初中数学)_第2页
教案范例(初中数学)_第3页
教案范例(初中数学)_第4页
教案范例(初中数学)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、可编辑上罗中学集体备课导学案第 28 章(课)第 1 节 锐角三角函数 第 1 课时 总第 2 个教案 主备人: 熊芳芳 审核人: 黄建申 学习目标1、初步了解锐角三角函数的意义,初步理解在直角三角形中一个锐角的对边与斜边的比值就是这个锐角的正弦的定义,并会根据已知直角三角形的边长求一个锐角的正弦值。2、从实际问题入手研究,经历从发现到解决直角三角形中的一个锐角所对应的对边与斜边之间的关系的过程,体会研究数学问题的一般方法以及所采用的思考问题的方法。3、在解决问题的过程中体验求索的科学精神以及严谨的科学态度,进一步激发学习需求。学习重点锐角的正弦的定义、表示法及表示意义。学习难点理解直角三角形

2、中一个锐角与其对边及斜边比值的对应关系。教具学具小黑板、实物投影、PPT等。本节课预习作业题1、在RtABC中,C90,A30,若BC35,则AB_;若BC80,则AB_;若BCa,则AB_即,在一个RtABC中,C90,A30时,A的对边(BC)与斜边(AB)的比都等于_,是一个固定的值。2、在RtABC中,C90,A45,若BCa,则AB_,BC/AB_,即在一个RtABC中,C90,A45时,A的对边(BC)与斜边(AB)的比都等于_,是一个固定值。3、探究:当A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个定值?任意画RtABC和RtABC,使CC90,AA那么BC/AB与BC

3、/AB有什么关系? B BA C A CCC 90AA_ BC AB BC AB即: BC BC AB AB这就说明:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何A的对边与斜边的比都是一个固定的值。4、正弦的定义如图,在RtABC中,C90,我们把锐角A的_与_的比叫做A的正弦,记为_,即SinA_ B c a A C b5、根据以上预习内容,完成练习(1)在ABC中,AC4,BC3,AB5,则SinA的值为( )A、3/5 B、4/5C、5/3 D、3/4(2)如图P为0外一点,PA切0于点A,且OP5,PA4,则SinAPO的值为( )A、4/5 B、3/5 C、4/3 D、

4、3/4 A AP O O B C(3)如图在RtABC中C90,AB3,AC22,则SinA_(4)在RtABC中C90,BC6cm,SinA3/5,则AB_cm(说明:本节课预习作业题应在前一节导学案中体现出来)教学设计:教学环节教学活动过程思考与调整活动内容师生行为预习交流(一)学生围绕教材内容和预习作业题自学35分钟。要求:1、了解由第(1)(2)(3)题探究所得到的规律(从特殊到一般);2、掌握正弦的定义、表示法及表示的意义;3、能进行正弦定义的简单运用。(二)分6个学习小组进行讨论交流:(三)教师精解点拨预习作业:(或根据生生互动交流情况灵活处理)1、第1题教师提示:在直角三角形中,

5、30角所对的边等于斜边的一半2、第3题通过30和45锐角与其所对的直角边与斜边的比值之间的对应关系,有助于学生形成猜想,从而引出对一般情况的猜想。3、第4题正确理解正弦的定义,同时请学生考虑SinB 。4、第5(1)题解题方法指导:画出图形、数形结合有助于解题。第5(2)题提示:连结AO。第5(3)题提醒:求的是SinA,而不是SinB第5(4)题提示:(1)画草图;(2)SinA等于3/5,是表示哪两条线段的比值。1、教师课前检查了解学生完成预习作业情况。2、教师布置学生自学,明确内容和要求,进行方法指导。3、生生互动,质疑答疑。通过再次预习和讨论交流,学生基本掌握所布置三个的要求和目标。4

6、、对第5题中四个问题进行解题方法指导。展示探究例1.RtABC中C90,求SinA和SinB。 B B 3 5 13A C C A 4例2.如图,在等腰ABC中ABAC10,BC12,求SinB的值。 A B C例3.如图,在正方形ABCD中,E是BC上的一点,以点E为圆心,EC长为半径的半圆与以点A为圆心,AB长为半径的圆孤外切,求SinEAB的值。 CD EA B1、教师布置学生先自己独立完成例1、例2两道题,再小组间交流讨论,全班展示,同学纠错,教师总结。展示形式可学生口述,可上黑板,可实物投影或PPT演示等。2、小组合作探究例题3,然后小组展示交流,必要时教师进行点拨:先让学生思考从条

7、件特点入手,找出EAB所在的RtABE,找出大圆半径、小圆半径、正方形边长之间的关系。检测反馈当堂检测题:1、如图,SinA_ SinB_ AB C 图1 图22、如图1是一张RtABC的纸片,如果用两张相同的这种纸片恰好能拼成一个正三角形(如图2所示),那么在RtABC中SinB_3、如图,在ABC中,AB42,AC6,B45,求SinC的值。 A B C1、教师布置检测题,巡回查看学生答题情况,当堂批阅,统计差错及目标达成率。2、教师重点讲评第3题,第1、2题教师报出答案后让学生自行纠正。课堂评价小结两个方面评价小结:1、对本节课的知识内容进行总结。(1)正弦的定义、表示法和表示意义等;(

8、2)正弦知识运用的注意点及解题方法等(根据学生的回答、解题等情况)2、对各个学习小组活动情况及学生参与学习积极性等方面进行评价小结。课后作业1、已知ABC的三边a、b、c满足 B a:b:C=5:12:13,求SinA、SinB值2、如图,在ABC中,C90,SinA4/5,BC20,求ABC的周长和面积。 A C预习作业1、在RtABC中,C90,当锐角A确定时,A的对边与斜边的比就随之确定,A的邻边与斜边的比,A的对边与邻边的比是否也随之确定?为什么?证明: BAA C=CABCABC A C AC AB AC AB即: AC AC B AB AB同理:BC BC A C AC AC2、余弦、正切的定义CosA=_ tanA=_锐角A的正弦、余弦、正切都叫做A的锐角三角函数。3、根据以上预习内容,完成练习(1)在RtABC中,C90,且三边长分别为a、b、c,则cosA的值为( ) A.a/c B.a/b C.b/c D.b/a(2)在ABC中,C90,AB13,BC5,则ta

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论