纳米复合材料外文翻译翻译英文帮助外文翻译英文翻译复合材料_第1页
纳米复合材料外文翻译翻译英文帮助外文翻译英文翻译复合材料_第2页
纳米复合材料外文翻译翻译英文帮助外文翻译英文翻译复合材料_第3页
纳米复合材料外文翻译翻译英文帮助外文翻译英文翻译复合材料_第4页
纳米复合材料外文翻译翻译英文帮助外文翻译英文翻译复合材料_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江师范大学生化学院本科毕业设计论文外文翻译译文1FEFE3BY2O3纳米复合材料在千兆赫范围内的电磁微波吸收性能刘九荣A、伊藤正博A、KENICHIMACHIDAAA大阪大学尖端科学技术合作研究中心吹田市,大阪5650871,日本接到于2003年2月24日,2003年9月8日录用摘要FEFE3BY2O3纳米复合材料采用熔体纺技术研发,其电磁微波吸收性能在0052005GHZ范围内。与FE/Y2O3复合物相比,FEFE3BY2O3的共振频率转移到一个较高的频率范围,这归因于四方FE3B的大各向异性场HA(04MA/M)。其相对介电常数()RRJ一直在低于0510GHZ的地区,这表明复合粉体具有高电阻率()。含质量分数10M80,厚度63MM的FEFE3BY2O3粉末的树脂复合材料分别在2765GHZ频率范围内获得有效的电磁微波吸收(反射损耗99)中制备BA3CO18FE236CR06O41。通过在乙烷中将BA3CO18FE236CR06O41(20DB)。值在0118GHZ范围R随着频率迅速从54减少到05。此外,值也随着频率从15减少到03,其01R18GHZ内没有呈现铁磁共振峰(图2),虽然,相对介电常数()在RRJ218GHZ范围保持几乎不变(17,15)。但是,FE/BA3CO18FE236CR06O41RR树脂复合材料的一个铁磁共振峰在418GHZ范围被观察到(图2(C)。早期的结果表明,在BA3CO18FE236CR06O41添加FE粉末形成纳米复合材料对减少涡流损耗具有显著影响。总之,通过将FE和BA3CO18FE236CR06O41进行球磨,已经分别制备了FE/BA3CO18FE236CR06O41(38,70或85VOLFE)纳米复合材料,其中BA3CO18FE236CR06O41具有磁体和绝缘体压制的涡流损耗的双重作用。FE/BA3CO18FE236CR06O41纳米复合材料具有比FE和BA3CO18FE236CR06O41更高的HC值。与铁氧体相比,含70或85VOLFE的FE/BA3CO18FE236CR06O41纳米复合材料有希望在较低频率范围生产更薄、更轻的电磁波吸收材料。这项工作得到了日本教育、科学、体育、文化部门和从2003年的新能源和工业技术发展组织的研究奖助金的支持(NEDO)。卡号15205025原文1ELECTROMAGNETICWAVEABSORPTIONPROPERTIESOFAFE/FE3B/Y2O3NANOCOMPOSITESINGIGAHERTZRANGEJIURONGLIU,MASAHIROITOH,ANDKENICHIMACHIDAAACOLLABORATIVERESEARCHCENTERFORADVANCEDSCIENCEANDTECHNOLOGYOSAKAUNIVERSITY,21YAMADAOKA,SUITA,OSAKA5650871,JAPANRECEIVED24FEBRUARY2003ACCEPTED8SEPTEMBER2003ABSTRACTNANOCOMPOSITESAFE/FE3B/Y2O3WEREPREPAREDBYAMELTSPUNTECHNIQUE,ANDTHEELECTROMAGNETICWAVEABSORPTIONPROPERTIESWEREMEASUREDINTHE0052005GHZRANGECOMPAREDWITHAFE/Y2O3COMPOSITES,THERESONANCEFREQUENCYFROFAFE/FE3B/Y2O3SHIFTEDTOAHIGHERFREQUENCYRANGEDUETOTHELARGEANISOTROPYELDHAOFTETRAGONALFE3B04MA/MTHERELATIVEPERMITTIVITYWASCONSTANTLYLOWOVERTHE0510GHZREGION,WHICHRRJINDICATESTHATTHECOMPOSITEPOWDERSHAVEAHIGHRESISTIVITYTHEEFFECTIVE10MELECTROMAGNETICWAVEABSORPTIONREECTIONLOSS999INPURITYBYMEANSOFINDUCTIONMELTINGINARAMORPHOUSY5FE775B175ALLOYRIBBONSWITH15MMINWIDTHANDABOUT30MMINTHICKNESSWEREPREPAREDBYTHESINGLEROLLERMELTSPUNAPPARATUSATAROLLSURFACEVELOCITYOF20M/SUSINGTHEEARLIERINGOTSASTHESTARTINGMATERIALSAFTERBALLMILLING,THEPOWDERSWITHPARTICLESIZESOF24MWEREHEATEDTO953KINHEWITHAHEATINGRATEOF40K/MINFOR10MINSUBSEQUENTHEATINGAT573KFOR2HINO2STREAMGAVETHERESULTANTPOWDERSWHICHWERECHARACTERIZEDBYXRAYDIFFRACTIONXRDTHEMICROSTRUCTURESWEREOBSERVEDONAHIGHRESOLUTIONSCANNINGELECTRONMICROSCOPEHITACHIS50003RESULTSANDDISCUSSION31STRUCTURECHARACTERISTICSEPOXYRESINCOMPOSITESWEREPREPAREDBYHOMOGENEOUSLYMIXINGTHECOMPOSITEPOWDERSWITH20WTEPOXYRESINANDPRESSINGINTOCYLINDRICALSHAPEDCOMPACTSTHESECOMPACTSWERECUREDBYHEATINGAT453KFOR30MIN,ANDTHENCUTINTOTOROIDALSHAPEDSAMPLESOF700MMOUTERDIAMETERAND304MMINNERDIAMETERTHESCATTERINGPARAMETERSS11,S21OFTHETOROIDALSHAPEDSAMPLEWEREMEASUREDUSINGAHEWLETTPACKARD8720BNETWORKANALYZERTHERELATIVEPERMEABILITYRANDPERMITTIVITYRVALUESWEREDETERMINEDFROMTHESCATTERINGPARAMETERSASMEASUREDINTHEFREQUENCYRANGEOF0052005GHZTHEREECTIONLOSSRLCURVESWERECALCULATEDFROMTHERELATIVEPERMEABILITYANDPERMITTIVITYATGIVENFREQUENCYANDABSORBERTHICKNESSWITHTHEFOLLOWINGEQUATIONS21/21/20TANH/INRRZJFDC300LOG|IIRLZWHEREFISTHEFREQUENCYOFTHEELECTROMAGNETICWAVE,DISTHETHICKNESSOFANABSORBER,CISTHEVELOCITYOFLIGHT,Z0ISTHEIMPEDANCEOFAIR,ANDZINISTHEINPUTIMPEDANCEOFABSORBERFIG1THEXRDPATTERNOFY5FE775B175POWDERS(A)ASOBTAINED,(B)AFTERANNEALINGAT953KFOR10MININHEGAS,AND(C)OXIDATIONDISPROPORTIONATINGTHESAMPLE(B)INO2AT573KFOR2HFIGURE1SHOWSTHETYPICALXRAYDIFFRACTIONPATTERNSMEASUREDONTHEAMORPHOUSY5FE775B175POWDERAASOBTAINED,(B)AFTERANNEALINGAT953KFOR10MININHE,AND(C)AFTEROXIDATIONDISPROPORTIONATINGSAMPLE(B)AT573KFOR2HINO2FROMFIG1(A),ITWASFOUNDTHATTHEY5FE775B175ALLOYPOWDERSPREPAREDBYUSINGTHEMELTSPUNTECHNIQUEWEREAMORPHOUSAFTERANNEALINGASSHOWNINFIG1(B),THEPOWDERSWERECOMPOSEDOFBOTHTHEFE3BANDY2FE14BPHASESAFTEROXIDATIONDISPROPORTIONATION,THEPHASEOFY2FE14BDISAPPEAREDCOMPARINGTHEXRDPATTERNINFIG1(B)WITHTHATOFFIG1(C),WESEETHATTHEINTENSITYFORTHEMAINPEAKOFFE3B(2445),WHICHISJUSTAMAINPEAKOFAFE(110),ISMUCHSTRONGERAFTEROXIDATIONTHISRESULTINDICATESTHATAFEISFORMEDBECAUSEOFTHEOXIDATIONOFY2FE14BINTOAFE,FE3BANDY2O3NANOPARTICLESBUTNOPEAKOFY2O3WASOBSERVEDFIG1CTHEREASONCOULDBETHATTHEY2O3PARTICLESIZEWASTOOSMALLTOBEDETECTEDTHEGRAINSIZESOFFE3BANDAFE,ABOUT30NM,WEREDETERMINEDFROMTHELINEBROADENINGOFTHEXRDPEAKSUSINGTHESCHERRERSFORMULATHISMEASUREMENTAGREESWITHTHEOBSERVATIONRESULTSBYHIGHRESOLUTIONSCANNINGELECTRONMICROSCOPY32MICROWAVEPROPERTIESTHEFREQUENCYDEPENDENCEONTHERELATIVEPERMITTIVITYFORRESINCOMPOSITES,INCLUDING80WTAFE/FE3B/Y2O3POWDERS,ISSHOWNINFIG2ATHEREALPARTRANDIMAGINARYPARTOFRELATIVEPERMITTIVITYWEREALMOSTCONSTANTOVERTHE0510RGHZRANGE,ANDHENCETHERELATIVEPERMITTIVITYSHOWEDALMOSTCONSTANTRRJ15,06THISNDINGINDICATESHIGHRESISTIVITYOFTHECOMPOSITESTHERRMEASUREDRESISTIVITYVALUEWASAROUND100MFORTHEAFE/FE3B/Y2O3COMPOSITES,BUTTHEELECTRICRESISTIVITYOFTHEND2FE14BCOMPOUNDWASREPORTEDAS14106M9THEHIGHRESISTIVITYOFTHENANOCOMPOSITESISASCRIBEDTOTHEPOWDERSCONSTITUENTSFE3B,AFE,ANDY2O3NANOPARTICLESEMBEDDEDAMONGFE3BANDAFEPARTICLES,Y2O3PLAYSAROLEASTHEINSULATORTHEREALPARTANDIMAGINARYPARTOFRELATIVEPERMEABILITYAREPLOTTEDASARRFUNCTIONOFFREQUENCYINFIG2BTHEREALPARTOFRELATIVEPERMEABILITYDECLINEDRFROM16TO09WITHFREQUENCYHOWEVER,THEIMAGINARYPARTOFRELATIVEPERMEABILITYINCREASEDFROM01TO06OVERARANGEOF171GHZ,ANDTHENDECREASEDINTHERHIGHERFREQUENCYRANGETHEIMAGINARYPARTOFRELATIVEPERMEABILITYEXHIBITEDAPEAKINABROADFREQUENCYRANGE29GHZCOMPAREDWITHAFE/Y2O3,THEAFE/FE3B/Y2O3COMPOSITESSHOWEDLOWERVALUESINBOTHTHEREALANDIMAGINARYRPARTSOFPERMEABILITYASSHOWNINFIG2BTHESELOWERVALUESAREDUETOTHERSMALLERMAGNETIZATIONOFFE3BTHANAFETHEREFORE,AFE/FE3B/Y2O3HASASMALLERRELATIVEPERMEABILITYTHANAFE/Y2O3BECAUSEOFTHECOOPERATIVEEFFECTOFAFEANDFE3BHOWEVER,THEMAXIMUMPOINTOFCURVEFORTHEAFE/FE3B/Y2O3COMPOSITESRSHIFTEDTOTHEHIGHERFREQUENCYVALUE71GHZASARESULT,THENANOCOMPOSITEPOWDERSPOSSESSAREMARKABLEFEATUREFORELECTROMAGNETICWAVEABSORPTIONINTHEHIGHERFREQUENCYREGIONFIG2FREQUENCYDEPENDENCESOFRELATIVEPERMITTIVITYRAANDPERMEABILITYRBFORTHERESINCOMPOSITESWITH80WTOFAFE/Y2O3ANDAFE/FE3B/Y2O3POWDERS33ABSORPTIONPERFORMANCEFIGURE3ASHOWSATYPICALRELATIONSHIPBETWEENRLANDFREQUENCYFORTHERESINCOMPOSITESWITH80WTAFE/FE3B/Y2O3POWDERSFIRST,THEMINIMUMREECTIONLOSSWASFOUNDTOMOVETOWARDTHELOWERFREQUENCYREGIONWITHINCREASINGTHETHICKNESSSECOND,THERLVALUESOFRESINCOMPOSITESLESSTHAN20DBWEREOBTAINEDINTHE2765GHZFREQUENCYRANGE,WITHTHICKNESSOF63MM,RESPECTIVELYINPARTICULAR,AMINIMUMRLVALUEOF33DBWASOBSERVEDAT45GHZONASPECIMENWITHAMATCHINGTHICKNESSDMOF4MM,ANDTHEMINIMUMDMVALUEOF3MMWASOBTAINEDAT65GHZRL27DBITISWELLKNOWNTHATONECRITERIONFORSELECTINGASUITABLEELECTROMAGNETICABSORPTIONMATERIALISTHELOCATIONOFITSNATURALRESONANCEFREQUENCYFRTHENATURALRESONANCEFREQUENCYISRELATEDTOTHEANISOTROPICELDHAVALUEBYTHEFOLLOWINGEQUATION42RAFHWHEREISTHEGYROMETRICRATIOANDHAISTHEANISOTROPICELDMANYWORKERSHAVEREPORTEDTHATTHELARGEHAVALUESOFTHEMTYPEFERRITESUSEDASELECTROMAGNETICWAVEABSORPTIONMATERIALSRESULTINAREMARKABLESHIFTTOHIGHFREQUENCYRANGEINFR1012THEREFORE,ONECANEXPECTTHATTHEFREQUENCYOFMICROWAVEABSORPTIONFORTHEMETALLICMAGNETSCANBECONTROLLEDBYCHANGINGTHEFRVALUEOFMATERIALSFIGURE3BSHOWSTHEFREQUENCYDEPENDENCEOFRL,FORRESINCOMPOSITESWITH80WTAFE/Y2O3POWDERSTHERLVALUEOFTHERESINCOMPOSITESLESSTHAN20DBWASOBTAINEDINAFREQUENCYRANGEOF2035GHZTHEELECTROMAGNETICWAVEABSORPTIONPROPERTIESOFAFE/SMO,AFE/Y2O3,ANDAFE/FE3B/Y2O3RESINCOMPOSITESPREPAREDUNDERTHEOPTIMIZEDCONDITIONSARESUMMARIZEDINTABLEIACOMPARISONOFTHESAMPLEAFE/FE3B/Y2O3WITHAFE/Y2O3SHOWSTHEMINIMUMREECTIONPOINTHASSHIFTEDTOAHIGHERFREQUENCY,FROM26TO45GHZTHISSHIFTISATTRIBUTEDTOTHEPARTIALREPLACEMENTOFCUBICAFEBYTETRAGONALFE3B,WHICHRESULTSINTHEINCREASEOFNATURALRESONANCEFREQUENCYFIG2BINAFE/FE3B/Y2O3NANOCOMPOSITES,AFEANDFE3BEXISTSIMULTANEOUSLYASMAGNETSCOMPAREDWITHAFE16GHZ,FE3BHASLARGERNATURALRESONANCEFREQUENCY14GHZASCALCULATEDFROMEQ4,WHICHISDUETOTHELARGEANISOTROPYELD04MA/M13BECAUSEOFTHEIRCOOPERATIVEEFFECT,THENATURALRESONANCEFREQUENCYFROFAFE/FE3B/Y2O3ISLOCATEDBETWEENTHATOFAFEANDFE3BHOWEVER,INTHE2735GHZRANGETHEMATCHINGTHICKNESSDMOFAFE/Y2O3ABSORBERSISTHINNERTHANAFE/FE3B/Y2O3FIG3BECAUSETHEVALUEOFAFE/Y2O3ISLARGERTHANTHATOFRAFE/FE3B/Y2O3INTHISFREQUENCYRANGEFORMAGNETICELECTROMAGNETICWAVEABSORPTIONMATERIALS,FM,WHENRL20DBCOMPAREDWITHFE/BA3CO18FE236CR06O41ONESTHEVALUERAPIDLYRDECLINEDWITHFREQUENCYFROM54TO05INTHE0118GHZFURTHERMORE,THERVALUEALSODECREASEDFROM15TO03WITHFREQUENCY,ANDNOFERROMAGNETICRESONANCEPEAKWASPRESENTINTHE0118GHZFIG2,ALTHOUGHTHERELATIVEPERMITTIVITYREMAINEDPRACTICALLYUNCHANGEDINTHE218GHZ(17RRJRAND15)BUTONEFERROMAGNETICRESONANCEPEAKCANBEOBSERVEDINTHE418GHZFORTHEFE/BA3CO18FE236CR06O41RESINCOMPOSITESFIG2CTHEEARLIERRESULTSINDICATEDTHATTHEBA3CO18FE236CR06O41ADDITIONINTOFEPOWDERSTOFORMNANOCOMPOSITESHASSIGNICANTEFFECTFORREDUCINGTHEEDDYCURRENTLOSSINCONCLUSION,FE/BA3CO18FE236CR06O4138,70,OR85VOLFENANOCOMPOSITESHAVEBEENPREPAREDBYBALLMILLINGFEWITHBA3CO18FE236CR06O41POWDERS,RESPECTIVELY,OFWHICHBA3CO18FE236CR06O41PLAYSTHEDOUBLEROLESASMAGNETANDINSULATORFORSUPPRESSINGTHEEDDYCURRENTLOSSFE/BA3CO18FE236CR06O41NANOCOMPOSITESSHOWEDHIGHERHCVALUESTHANFEANDBA3CO18FE236CR06O41COMPARINGWITHFERRITES,FE/BA3CO18FE236CR06O41NANOCOMPOSITESWITH70OR85VOLFEAREPROMISINGFORPRODUCINGTHINNERANDLIGHTEREMWAVEABSORBERSINLOWGHZRANGETHISWORKWASSUPPORTEDBYGRANTINAIDFORSCIENTICRESEARCHNO15205025FROMTHEMINISTRYOFEDUCATION,SCIENCE,SPORTS,ANDCULTUREOFJAPAN,ANDINDUSTRIALTECHNOLOGYRESEARCHGRANTPROGRAMIN2003FROMNEWENERGYANDINDUSTRIALTECHNOLOGYDEVELOPMENTORGANIZATIONNEDOOFJAPAN1YNAITOANDKSUETAKI,IEEETRANSMICROWAVETHEORYTECH19,65(1971)2SAOLIVER,MLCHEN,CVITTORIA,ANDPLU

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论